We give a sufficient condition on the boundary of a domain, insuring that the automorphism group of the domain is compact.
Nous donnons une condition suffisante sur la frontière d'un domaine assurant la compacité du groupe de Lie des automorphismes holomorphes du domaine.
Accepted:
Published online:
Jisoo Byun 1; Hervé Gaussier 1
@article{CRMATH_2005__341_9_545_0, author = {Jisoo Byun and Herv\'e Gaussier}, title = {On the compactness of the automorphism group of a domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {545--548}, publisher = {Elsevier}, volume = {341}, number = {9}, year = {2005}, doi = {10.1016/j.crma.2005.09.018}, language = {en}, }
Jisoo Byun; Hervé Gaussier. On the compactness of the automorphism group of a domain. Comptes Rendus. Mathématique, Volume 341 (2005) no. 9, pp. 545-548. doi : 10.1016/j.crma.2005.09.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.018/
[1] Domains in with non compact holomorphic automorphism group, Math. USSR-Sb., Volume 63 (1989), pp. 141-151
[2] Convex domains with noncompact groups of automorphisms, Mat. Sb., Volume 185 (1994), pp. 3-26 (in Russian); Translation in Russian Acad. Sci. Sb. Math., 82, 1995, pp. 1-20
[3] Compactness of families of holomorphic mappings up to the boundary, Lecture Notes in Math., vol. 1268, Springer-Verlag, Berlin/New York, 1987, pp. 29-42
[4] A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math., Volume 57 (1980), pp. 283-289
[5] A lower bound on the Kobayashi metric near a point of finite type in , J. Geom. Anal., Volume 2 (1992) no. 4, pp. 317-325
[6] Real hypersurfaces, orders of contact, and applications, Ann. Math., Volume 115 (1982), pp. 615-673
[7] Upper semicontinuity of the dimensions of automorphism groups of domains in , Amer. J. Math., Volume 125 (2003) no. 2, pp. 289-299
[8] Techniques for studying automorphisms of weakly pseudoconvex domains, Math. Notes, vol. 38, Princeton Univ. Press, Princeton, NJ, 1993, pp. 389-410
[9] Holomorphic automorphisms of certain class of domains of infinite type, Tohoku Math. J., Volume 46 (1994), pp. 435-442
[10] On a boundary point repelling automorphism orbits, J. Math. Anal. Appl., Volume 179 (1993), pp. 463-482
[11] On the automorphism group of convex domain in , Adv. in Geom., Volume 4 (2004), pp. 33-40
[12] Complex scaling and Domains with non-compact automorphism group, Illinois J. Math., Volume 45 (2001), pp. 1273-1299
[13] Characterization of smooth domains in C by their biholomorphic self-maps, Amer. Math. Monthly, Volume 90 (1983) no. 8, pp. 555-557
[14] The automorphism group of domains with boundary points of infinite type, Illinois J. Math., Volume 48 (2004), pp. 875-885
[15] Une caractérisation de la boule parmi les domaines de par son groupe d'automorphismes, Ann. Inst. Fourier (Grenoble), Volume 29 (1979), pp. 91-97
[16] Characterization of the unit ball in by its automorphism group, Invent. Math., Volume 41 (1977), pp. 253-257
Cited by Sources:
Comments - Policy