We prove that a finitely generated group acting without fixed point on a n-dimensional Cartan–Hadamard manifold of pinched sectional curvature is either virtually nilpotent or has entropy .
Nous prouvons qu'un sous groupe de type fini Γ, non virtuellement nilpotent, du groupe des isométries d'une variété de Cartan–Hadamard de dimension n et de courbure sectionnelle vérifiant est d'entropie algébrique minorée, .
Accepted:
Published online:
Gérard Besson 1; Gilles Courtois 2; Sylvestre Gallot 1
@article{CRMATH_2005__341_9_567_0, author = {G\'erard Besson and Gilles Courtois and Sylvestre Gallot}, title = {Growth of discrete groups of isometries in negative curvature: a gap-property}, journal = {Comptes Rendus. Math\'ematique}, pages = {567--572}, publisher = {Elsevier}, volume = {341}, number = {9}, year = {2005}, doi = {10.1016/j.crma.2005.09.025}, language = {en}, }
TY - JOUR AU - Gérard Besson AU - Gilles Courtois AU - Sylvestre Gallot TI - Growth of discrete groups of isometries in negative curvature: a gap-property JO - Comptes Rendus. Mathématique PY - 2005 SP - 567 EP - 572 VL - 341 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2005.09.025 LA - en ID - CRMATH_2005__341_9_567_0 ER -
Gérard Besson; Gilles Courtois; Sylvestre Gallot. Growth of discrete groups of isometries in negative curvature: a gap-property. Comptes Rendus. Mathématique, Volume 341 (2005) no. 9, pp. 567-572. doi : 10.1016/j.crma.2005.09.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.025/
[1] Non vanishing of algebraic entropy for geometrically finite groups of isometries of Hadamard manifolds (Preprint) | arXiv
[2] Rigidity of amalgamated products in negative curvature (Preprint) | arXiv
[3] Un lemme de Margulis sans courbure et ses applications, Prépublication Inst. Fourier, Volume 595 (2003), pp. 1-59
[4] An effective Tits alternative http://www.dma.ens.fr/~breuilla/ (Abstract)
[5] E. Breuillard, T. Gelander, Cheeger constant and algebraic entropy of linear groups, Preprint, June 2005
[6] Geometric Inequalities, Grundlehren Math. Wiss., vol. 285, Springer-Verlag, Berlin/New York, 1988
[7] Topics in Geometric Group Theory, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, 2000
[8] Uniform growth in groups of exponential growth, Geom. Dedicata, Volume 95 (2002), pp. 1-17
[9] Limit behaviour of exponential growth rates for finitely generated groups, Monographie de l'Enseignement Mathématique, Volume 38 (2001), pp. 351-370
[10] On uniform exponential growth for linear groups, Invent. Math., Volume 160 (2005), pp. 1-30
[11] Metric Structures for Riemannian and Non-Riemannian Spaces (J. Lafontaine; P. Pansu, eds.), Progress in Math., Birkhäuser, Basel, 1999
[12] M. Kapovitch, On Ping–Pong argument, Private communication, 2003 July 26th
[13] Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier, Volume 48 (1998), pp. 1441-1453
[14] The entropy of solvable groups, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 907-918
[15] On exponential growth and uniformly exponential growth for groups, Invent. Math., Volume 155 (2004), pp. 287-303
[16] Growth of relatively hyperbolic groups (Preprint) | arXiv
Cited by Sources:
Comments - Policy