In this Note we show that the set of quasi-copulas is a complete lattice, which is order-isomorphic to the Dedekind–MacNeille completion of the set of copulas. Consequently, any set of copulas sharing a particular statistical property is guaranteed to have pointwise best-possible bounds within the set of quasi-copulas.
Dans cette Note, nous montrons que l'ensemble des quasi-copules est un treillis complet, qui est isomorphe au sens de l'ordre à la complétion de Dedekind–MacNeille de l'ensemble des copules. En conséquence, tout ensemble de copules qui possède une propriété statistique particulière est assuré de réaliser les meilleures bornes ponctuelles parmi l'ensemble des quasi-copules.
Accepted:
Published online:
Roger B. Nelsen 1; Manuel Úbeda Flores 2
@article{CRMATH_2005__341_9_583_0, author = {Roger B. Nelsen and Manuel \'Ubeda Flores}, title = {The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas}, journal = {Comptes Rendus. Math\'ematique}, pages = {583--586}, publisher = {Elsevier}, volume = {341}, number = {9}, year = {2005}, doi = {10.1016/j.crma.2005.09.026}, language = {en}, }
TY - JOUR AU - Roger B. Nelsen AU - Manuel Úbeda Flores TI - The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas JO - Comptes Rendus. Mathématique PY - 2005 SP - 583 EP - 586 VL - 341 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2005.09.026 LA - en ID - CRMATH_2005__341_9_583_0 ER -
Roger B. Nelsen; Manuel Úbeda Flores. The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. Comptes Rendus. Mathématique, Volume 341 (2005) no. 9, pp. 583-586. doi : 10.1016/j.crma.2005.09.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.026/
[1] On the characterization of a class of binary operations on distribution functions, Statist. Probab. Lett., Volume 17 (1993), pp. 85-89
[2] Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002
[3] A characterization of quasi-copulas, J. Multivariate Anal., Volume 69 (1999), pp. 193-205
[4] An Introduction to Copulas, Springer-Verlag, Berlin/New York, 1999
[5] Best-possible bounds on sets of bivariate distribution functions, J. Multivariate Anal., Volume 90 (2004), pp. 348-358
[6] Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, Volume 8 (1959), pp. 229-231
Cited by Sources:
Comments - Policy