We exhibit a class of statistically self-similar processes naturally associated with the so-called fixed points of the smoothing transformation. This class includes stable subordinators and Mandelbrot multiplicative cascades. Both these processes are special examples of Lévy processes in multifractal time, which are studied in other works. We describe their multifractal nature.
Nous présentons une classe de processus auto-similaires en loi naturellement associés aux généralisations des lois semi-stables considérées. Cette classe contient en particulier les subordinateurs stables de Lévy ainsi que les cascades multiplicatives de Mandelbrot ; ses éléments sont des cas particuliers des processus de Lévy en temps multifractal étudiés ailleurs. Nous étudions leur nature multifractale.
Accepted:
Published online:
Julien Barral 1; Stéphane Seuret 2
@article{CRMATH_2005__341_9_579_0, author = {Julien Barral and St\'ephane Seuret}, title = {A class of multifractal semi-stable processes including {L\'evy} subordinators and {Mandelbrot} multiplicative cascades}, journal = {Comptes Rendus. Math\'ematique}, pages = {579--582}, publisher = {Elsevier}, volume = {341}, number = {9}, year = {2005}, doi = {10.1016/j.crma.2005.09.020}, language = {en}, }
TY - JOUR AU - Julien Barral AU - Stéphane Seuret TI - A class of multifractal semi-stable processes including Lévy subordinators and Mandelbrot multiplicative cascades JO - Comptes Rendus. Mathématique PY - 2005 SP - 579 EP - 582 VL - 341 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2005.09.020 LA - en ID - CRMATH_2005__341_9_579_0 ER -
%0 Journal Article %A Julien Barral %A Stéphane Seuret %T A class of multifractal semi-stable processes including Lévy subordinators and Mandelbrot multiplicative cascades %J Comptes Rendus. Mathématique %D 2005 %P 579-582 %V 341 %N 9 %I Elsevier %R 10.1016/j.crma.2005.09.020 %G en %F CRMATH_2005__341_9_579_0
Julien Barral; Stéphane Seuret. A class of multifractal semi-stable processes including Lévy subordinators and Mandelbrot multiplicative cascades. Comptes Rendus. Mathématique, Volume 341 (2005) no. 9, pp. 579-582. doi : 10.1016/j.crma.2005.09.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.020/
[1] Continuity of the multifractal spectrum of a statistically self-similar measure, J. Theoret. Probab., Volume 13 (2000), pp. 1027-1060
[2] Combining multifractal additive and multiplicative chaos, Commun. Math. Phys., Volume 257 (2005) no. 2, pp. 473-497
[3] J. Barral and S. Seuret, Heterogeneous ubiquitous systems in and Hausdorff dimensions, Preprint (2005), | arXiv
[4] J. Barral and S. Seuret, Renewal of singularity sets of statistically self-similar measures, J. Stat. Phys., in press; | arXiv
[5] J. Barral, S. Seuret, The singularity spectrum of Lévy processes in multifractal time, Preprint (2005)
[6] On the multifractal analysis of measures, J. Stat. Phys., Volume 66 (1992) no. 3–4, pp. 775-790
[7] Fixed points of the smoothing transformation, Z. Wahrsch. verw. Gebiete, Volume 64 (1983), pp. 275-301
[8] Sur une extension de la notion de loi semi-stable, Ann. Inst. H. Poincaré, Probab. Statist., Volume 26 (1990), pp. 261-285
[9] The multifractal nature of Lévy processes, Probab. Theory Relat. Fields, Volume 114 (1999) no. 2, pp. 207-227
[10] Sur certaines martingales de Benoît Mandelbrot, Adv. Math., Volume 22 (1976), pp. 131-145
[11] Théorie des erreurs. La loi de Gauss et les lois exceptionnelles, Bull. Soc. Math., Volume 52 (1924), pp. 49-85
[12] Asymptotic properties and absolute continuity of laws stable by random weighted mean, Stoch. Proc. Appl., Volume 95 (2001), pp. 83-107
[13] Intermittent turbulence in self-similar cascades: divergence of hight moments and dimension of the carrier, J. Fluid. Mech., Volume 62 (1974), pp. 331-358
[14] B. Mandelbrot, A. Fischer, L. Calvet, A multifractal model of asset returns, Cowles Foundation Discussion Paper #1164 (1997)
[15] A multifractal formalism, Adv. Math., Volume 116 (1995), pp. 92-195
[16] Multifractal processes (P. Doukhan; G. Oppenheim; M.S. Taqqu, eds.), Long Range Dependence: Theory and Applications, Birkhäuser, Basel, 2002, pp. 625-715
Cited by Sources:
Comments - Policy