This Note is focused on the derivation of state-realizations of diffusive type for linear operator solutions of some linear partial differential operational equations. It allows the implementation of a large class of linear operators on semi-decentralized architectures. The practical interest of this work relates, for example, to the realization of optimal control law for linear partial differential equations.
Cette Note concerne la réalisation d'opérateurs linéaires solutions d'équations aux dérivées partielles opérationnelles basée sur la méthode dite des réalisations diffusives. Elle permet d'envisager l'implantation de tels opérateurs sur des calculateurs ayant une architecture semi-décentralisée. L'intérêt pratique du résultat est relatif à la mise en oeuvre de lois de contrôle optimal pour des problèmes régis par des équations aux dérivées partielles.
Accepted:
Published online:
Michel Lenczner 1; Gérard Montseny 2
@article{CRMATH_2005__341_12_737_0, author = {Michel Lenczner and G\'erard Montseny}, title = {Diffusive realization of operator solutions of certain operational partial differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {737--740}, publisher = {Elsevier}, volume = {341}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.09.036}, language = {en}, }
TY - JOUR AU - Michel Lenczner AU - Gérard Montseny TI - Diffusive realization of operator solutions of certain operational partial differential equations JO - Comptes Rendus. Mathématique PY - 2005 SP - 737 EP - 740 VL - 341 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2005.09.036 LA - en ID - CRMATH_2005__341_12_737_0 ER -
Michel Lenczner; Gérard Montseny. Diffusive realization of operator solutions of certain operational partial differential equations. Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 737-740. doi : 10.1016/j.crma.2005.09.036. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.036/
[1] Distributed control of spatially-invariant systems, IEEE Trans. Automatic Control, Volume 47 (2002) no. 7, pp. 1091-1107
[2] Cellular Neural Networks and Visual Computing, Cambridge University Press, Cambridge, 2002
[3] Distributed control design for spatially interconnected systems, IEEE Trans. Automatic Control, Volume 48 (2003) no. 9, pp. 1478-1495
[4] Distributed optimal control of vibrations: a high frequency approximation approach, Smart Materials and Structures, Volume 12 (2003), p. 437
[5] Control Theory for Partial Differential Equations I and II, Encyclopedia Math., vols. 74 and 75, Cambridge University Press, 2000
[6] Infinite-dimensional linear systems: optimal control and Riccati equations, PhD Thesis, Helsinki University of Technology, Institute of Mathematics, 2002 http://www.math.hut.fi/~kmikkola (available at)
[7] Représentation diffusive, Hermès-Science, July 2005
[8] New Riccati equation for well-posed linear systems http://www.math.rug.nl/~curtain (in press, available at)
Cited by Sources:
Comments - Policy