Let be a pointed Riemann surface of genus , and let be the moduli space parameterizing logarithmic -connections on X that are singular exactly over and have residue . We show that the moduli space determines X up to isomorphism.
Soit une surface de Riemann pointée de genre , et soit l'espace des modules des -connexions logarithmiques qui ont une singularité exactement en et ont pour résidu . On démontre que l'espace des modules détermine X à isomorphisme près.
Accepted:
Published online:
Indranil Biswas 1; Jan Nagel 2
@article{CRMATH_2005__341_10_617_0, author = {Indranil Biswas and Jan Nagel}, title = {A {Torelli} type theorem for the moduli space of rank two connections on a curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {617--622}, publisher = {Elsevier}, volume = {341}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.09.043}, language = {en}, }
Indranil Biswas; Jan Nagel. A Torelli type theorem for the moduli space of rank two connections on a curve. Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 617-622. doi : 10.1016/j.crma.2005.09.043. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.043/
[1] Geometry of Algebraic Curves, I, Springer-Verlag, New York, 1985
[2] I. Biswas, N. Raghavendra, Line bundles over a moduli space of logarithmic connections on a Riemann surface, Geom. Funct. Anal., in press
[3] Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math., Volume 72 (1960), pp. 179-188
[4] Extensions of mixed Hodge structures, Journées de géométrie algébrique d'Angers 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 107-127
[5] Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math., vol. 163, Springer-Verlag, Berlin, 1970
[6] The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., Volume 55 (1987), pp. 59-126
[7] Periods of a moduli space of bundles on curves, Amer. J. Math., Volume 90 (1968), pp. 1200-1208
[8] Topological properties of some spaces of stable bundles, Topology, Volume 6 (1967), pp. 241-262
[9] Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math., Volume 82 (1965), pp. 540-567
[10] Moduli of semistable logarithmic connections, J. Amer. Math. Soc., Volume 6 (1993), pp. 597-609
[11] Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math., Volume 79 (1994), pp. 47-129
Cited by Sources:
Comments - Policy