[Optimisation du taux de croissance dans un modèle de division cellulaire]
Nous considérons un modèle d'évolution d'une densité de cellules structurée en taille. Nous savons que la densité de cellules se comporte en temps long comme le produit d'une fonction indépendante du temps et d'une exponentielle dépendant du temps. Le taux de croissance exponentiel étant donné par un paramètre Maltusien dont nous allons montrer qu'il depend de la manière dont la cellule se divise, symétriquement ou non symétriquement. On donnera des exemples pour lesquels la division symétrique n'est pas la mieux adaptée, c'est-à-dire pour lesquels le taux de croissance exponentiel n'est pas maximal.
We consider a size structured cell population model where a mother cell gives birth to two cells. We know that the asymptotic behavior of the density of cells is given by the solution to an eigenproblem. The eigenvector gives the asymptotic shape and the eigenvalue gives the exponential growth rate and so the Maltusian parameter. The Maltusian parameter depends on the division rule for the mother, i.e., symmetric (the two daughter cells have the same size) or asymmetric. We give some example where the symmetrical division is not the best fitted division, i.e., the Maltusian parameter is not optimal.
Accepté le :
Publié le :
Philippe Michel 1, 2
@article{CRMATH_2005__341_12_731_0, author = {Philippe Michel}, title = {Fitness optimization in a cell division model}, journal = {Comptes Rendus. Math\'ematique}, pages = {731--736}, publisher = {Elsevier}, volume = {341}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.10.012}, language = {en}, }
Philippe Michel. Fitness optimization in a cell division model. Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 731-736. doi : 10.1016/j.crma.2005.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.012/
[1] Asymptotic laws for nonconservative self-similar fragmentations, Electron. J. Probab., Volume 9 (2004) no. 19, pp. 575-593
[2] On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol., Volume 43 (2001) no. 2, pp. 157-189
[3] On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Non Linéaire Anal., Volume 22 (2005) no. 1, pp. 99-125
[4] Exponential trend to equilibrium for discrete coagulation equations with strong fragmentation and without a balance condition, Proc. Roy Soc. London Ser. A, Volume 460 (2004) no. 2049, pp. 2477-2486
[5] Matrix Analysis, Cambridge University Press, Cambridge, 1985 (Chapter 6.3, p. 372)
[6] Steady states for a fragmentation equation with size diffusion, Banach Center Publ., Volume 66 (2004), pp. 211-219
[7] The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath., vol. 68, Springer-Verlag, 1986
[8] P. Michel, PhD Thesis, Univ. Paris 9, Dauphine, in preparation
[9] P. Michel, S. Mischler, B. Perthame, General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., in press
[10] P. Michel, Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., in press
[11] Exponential decay for the fragmentation or cell-division equation, J. Differential Equations, Volume 210 (2005) no. 1, pp. 155-177
Cité par Sources :
Commentaires - Politique