Let X be an analytic subset of of pure dimension such that the projection is surjective and proper, where U is a Runge domain. We show that X can be approximated by Nash sets.
Soit un ensemble analytique de dimension pure tel que la projection est surjective et propre, où U est un domaine de Runge. Nous démontrons que X est approchable par des ensembles de Nash.
Accepted:
Published online:
Marcin Bilski 1
@article{CRMATH_2005__341_12_747_0, author = {Marcin Bilski}, title = {Approximation of analytic sets with proper projection by {Nash} sets}, journal = {Comptes Rendus. Math\'ematique}, pages = {747--750}, publisher = {Elsevier}, volume = {341}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.10.016}, language = {en}, }
Marcin Bilski. Approximation of analytic sets with proper projection by Nash sets. Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 747-750. doi : 10.1016/j.crma.2005.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.016/
[1] Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Fonctions de plusieurs variables complexes, II, Sém. François Norguet, 1974–1975, Lecture Notes in Math., vol. 482, Springer, Berlin, 1975, pp. 1-158
[2] On approximation of analytic sets, Manuscripta Math., Volume 114 (2004), pp. 45-60
[3] Complex Analytic Sets, Kluwer Academic Publishers, Dordrecht, 1989
[4] Monge–Ampere operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115-193
[5] Algebraic approximation of holomorphic maps from Stein domains to projective manifolds, Duke Math. J., Volume 76 (1994), pp. 333-363
[6] Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France, Volume 85 (1957), pp. 239-262
[7] Algebraic approximations in analytic geometry, Invent. Math., Volume 121 (1995), pp. 335-354
[8] Relative approximation theorems of Stein manifolds by Nash manifolds, Boll. Un. Mat. Ital. A, Volume 3 (1989), pp. 343-350
[9] On the extension of Nash functions, Math. Ann., Volume 288 (1990), pp. 595-604
[10] On the relative Nash approximation of analytic maps, Rev. Mat. Complut., Volume 11 (1998), pp. 185-201
[11] Intersections of analytic sets with linear subspaces, Ann. Sc. Norm. Sup. Pisa, Volume 17 (1990), pp. 227-271
[12] Intersection theory in complex analytic geometry, Ann. Polon. Math., Volume 62 (1995) no. 2, pp. 177-191
[13] Continuity of intersection of analytic sets, Ann. Polon. Math., Volume 42 (1983), pp. 387-393
[14] Complex Analytic Varieties, Addison-Wesley Publishing Co., Reading, MA, 1972
Cited by Sources:
Comments - Policy