In the present Note we introduce new matrix extrapolation methods as a generalization of well known vector extrapolation methods. We give expressions of the obtained approximation via the Schur complement. We apply these methods to linearly generated sequences and give some theoretical results.
Dans cette Note, nous introduisons de nouvelles méthodes d'extrapolation matricielle comme généralisation de certaines méthodes d'extrapolation vectorielle. Les approximations obtenues sont données sous forme de complément de Schur. Ces méthodes seront ensuite appliquées à des suites matricielles générées linéairement et des résultas théoriques sont proposés.
Accepted:
Published online:
Khalide Jbilou 1; Abderrahim Messaoudi 2; Khalid Tabaa 3
@article{CRMATH_2005__341_12_781_0, author = {Khalide Jbilou and Abderrahim Messaoudi and Khalid Tabaa}, title = {On some matrix extrapolation methods}, journal = {Comptes Rendus. Math\'ematique}, pages = {781--786}, publisher = {Elsevier}, volume = {341}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.10.019}, language = {en}, }
Khalide Jbilou; Abderrahim Messaoudi; Khalid Tabaa. On some matrix extrapolation methods. Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 781-786. doi : 10.1016/j.crma.2005.10.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.019/
[1] Généralisation de la transformation de Shanks, de la table de la Table de Padé et l'epsilon-algorithm, Calcolo, Volume 12 (1975), pp. 317-360
[2] The block Lanczos and Vorobyev methods, C. R. Acad. Sci. Paris, Sér. I, Volume 331 (2000), pp. 137-142
[3] Block descent methods and hybrid procedures for linear systems, Numer. Algorithms, Volume 29 (2002), pp. 21-32
[4] Extrapolation Methods. Theory and Practice, North-Holland, Amsterdam, 1991
[5] Vector and matrix sequence transformations based on biorthogonality, Appl. Numer. Math., Volume 21 (1996), pp. 353-373
[6] A Schur complement approach to a general extrapolation algorithm, Linear Algebra Appl., Volume 368 (2003), pp. 279-301
[7] A polynomial extrapolation method for finding limits and antilimits for vector sequences, SIAM J. Numer. Anal., Volume 13 (1976), pp. 734-752
[8] Extrapolation to the limit of a vector sequence (P.C.C. Wang, ed.), Information Linkage Between Applied Mathematics and Industry, Academic Press, New York, 1979, pp. 387-396
[9] Analysis of some vector extrapolation methods for linear systems, Numer. Math., Volume 70 (1995), pp. 73-89
[10] LU-implementation of the modified minimal polynomial extrapolation method, IMA J. Numer. Anal., Volume 19 (1999), pp. 549-561
[11] Convergence acceleration for the iterative solution of , Comput. Methods Appl. Mech. Engrg., Volume 10 (1977) no. 2, pp. 165-173
[12] Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations, USSR Comput. Math. Math. Phys., Volume 17 (1978), pp. 199-207
[13] Iterative Methods for Sparse Linear Systems, PWS Press, New York, 1995
[14] Convergence and stability of minimal polynomial and reduced rank extrapolation algorithms, SIAM J. Numer. Anal., Volume 23 (1986), pp. 197-209
[15] Acceleration of convergence of vector sequences, SIAM J. Numer. Anal., Volume 23 (1986), pp. 178-196
[16] Acceleration technique for iterated vector and matrix problems, Math. Comp., Volume 16 (1962), pp. 301-322
[17] The Schur Complement and its Applications, Springer, New York, 2005
Cited by Sources:
Comments - Policy