Comptes Rendus
Numerical Analysis
Resolution of the finite Markov moment problem
Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 775-780.

We expose in full detail a constructive procedure to invert the so-called ‘finite Markov moment problem’. The proofs rely on the general theory of Toeplitz matrices together with the classical Newton's relations.

Nous présentons en détail une procédure constructive pour inverser le « problème fini des moments de Markov ». Les preuves reposent sur la théorie générale des matrices de Toeplitz et les classiques relations de Newton.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.10.009

Laurent Gosse 1; Olof Runborg 2

1 IAC-CNR “Mauro Picone” (sezione di Bari), Via Amendola 122/D, 70126 Bari, Italy
2 NADA, KTH, 10044 Stockholm, Sweden
@article{CRMATH_2005__341_12_775_0,
     author = {Laurent Gosse and Olof Runborg},
     title = {Resolution of the finite {Markov} moment problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {775--780},
     publisher = {Elsevier},
     volume = {341},
     number = {12},
     year = {2005},
     doi = {10.1016/j.crma.2005.10.009},
     language = {en},
}
TY  - JOUR
AU  - Laurent Gosse
AU  - Olof Runborg
TI  - Resolution of the finite Markov moment problem
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 775
EP  - 780
VL  - 341
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2005.10.009
LA  - en
ID  - CRMATH_2005__341_12_775_0
ER  - 
%0 Journal Article
%A Laurent Gosse
%A Olof Runborg
%T Resolution of the finite Markov moment problem
%J Comptes Rendus. Mathématique
%D 2005
%P 775-780
%V 341
%N 12
%I Elsevier
%R 10.1016/j.crma.2005.10.009
%G en
%F CRMATH_2005__341_12_775_0
Laurent Gosse; Olof Runborg. Resolution of the finite Markov moment problem. Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 775-780. doi : 10.1016/j.crma.2005.10.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.009/

[1] D. Bini, Polynomial and Matrix Computations. I. Fundamental Algorithms, Birkhaüser

[2] Y. Brenier Équations de moment et conditions d'entropie pour des modèles cinétiques, Séminaire sur les Équations aux Dérivées Partielles, 1994–1995, Exp. No. XXII, École Polytech., Palaiseau, 1995 (11 p)

[3] Y. Brenier; L. Corrias A kinetic formulation for multibranch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéare, Volume 15 (1998), pp. 169-190

[4] P. Diaconis, D. Friedman, The Markov moment problem and de Finetti's theorem, Math. Z., in press

[5] L. Gosse Using K-branch entropy solutions for multivalued geometric optics computations, J. Comp. Phys., Volume 180 (2002), pp. 155-182

[6] L. Gosse; O. Runborg Finite moment problems and applications to multiphase computations in geometric optics, Comm. Math. Sci., Volume 3 (2005), pp. 373-392

[7] I.N. Hepstein Topics in Algebra, Ginn Waltham, Massachusetts, 1964 (p. 208)

[8] V.I. Korobov; G.M. Sklyar Time-optimality and the power moment problem, Mat. Sb. (N.S.), Volume 134 (1987) no. 176, pp. 186-206 287 (in Russian) Translation in Math. USSR-Sb., 62, 1, 1989, pp. 185-206

[9] M.G. Krein; A.A. Nudel'man The Markov Moment Problem and Extremal Problems, Amer. Math. Soc. Transl., Amer. Math. Soc., Providence, RI, 1977

[10] A.S. Lewis Superresolution in the Markov moment problem, J. Math. Anal. Appl., Volume 197 (1996), pp. 774-780

[11] O. Runborg Some new results in multiphase geometrical optics, Math. Mod. Numer. Anal., Volume 34 (2000), pp. 1203-1231

[12] G.M. Sklyar; L.V. Fardigola The Markov power moment problem in problems of controllability and frequency extinguishing for the wave equation on a half-axis, J. Math. Anal. Appl., Volume 276 (2002), pp. 109-134

[13] G. Talenti Recovering a function from a finite number of moments, Inverse Problems, Volume 3 (1987), pp. 501-517

Cited by Sources:

Comments - Policy