We establish a KMT coupling for the sequential empirical process and the Kiefer–Müller process. The processes are indexed by functions f from a Hölder class , but the supremum over is taken outside the probability. Compared to the coupling in sup-norm, this allows for larger functional classes . The result is useful for proving asymptotic equivalence of certain nonparametric statistical experiments.
Nous établissons un couplage KMT pour le processus empirique séquentiel et le processus de Kiefer–Müller. Les processus sont indexés par des fonctions f appartenant à une classe de Hölder , mais le supremum est pris en dehors de la probabilité. Comparé au couplage en norme sup, ceci permet des classes de fonctions plus larges. Le résultat peut être utilisé pour démontrer l'équivalence asymptotique de certaines expériences statistiques non-paramétriques.
Accepted:
Published online:
Michael Jähnisch 1; Michael Nussbaum 2
@article{CRMATH_2005__341_12_761_0, author = {Michael J\"ahnisch and Michael Nussbaum}, title = {A functional {Hungarian} construction for the sequential empirical process}, journal = {Comptes Rendus. Math\'ematique}, pages = {761--763}, publisher = {Elsevier}, volume = {341}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.10.022}, language = {en}, }
TY - JOUR AU - Michael Jähnisch AU - Michael Nussbaum TI - A functional Hungarian construction for the sequential empirical process JO - Comptes Rendus. Mathématique PY - 2005 SP - 761 EP - 763 VL - 341 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2005.10.022 LA - en ID - CRMATH_2005__341_12_761_0 ER -
Michael Jähnisch; Michael Nussbaum. A functional Hungarian construction for the sequential empirical process. Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 761-763. doi : 10.1016/j.crma.2005.10.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.022/
[1] Hungarian constructions from the non-asymptotic viewpoint, Ann. Probab., Volume 17 (1989), pp. 239-256
[2] Strong approximation of bivariate uniform empirical processes, Ann. Inst. H. Poincaré Probab. Statist., Volume 34 (1998), pp. 425-480
[3] Real Analysis and Probability, Wadsworth Brooks/Cole, Pacific Grove, CA, 1989
[4] A functional Hungarian construction for sums of independent random variables, Ann. Inst. H. Poincaré Probab. Statist., Volume 38 (2002), pp. 923-957
[5] Asymptotic equivalence for nonparametric generalized linear models, Probab. Theory Related Fields, Volume 111 (1998), pp. 167-214
[6] Asymptotic equivalence for nonparametric regression, Math. Methods Statist., Volume 11 (2002) no. 1, pp. 1-36
[7] M. Jähnisch, Asymptotische Äquivalenz für ein Modell unabhängiger nicht identisch verteilter Daten, Doctoral Thesis, Humboldt Universität zu Berlin, 1999
[8] Asymptotic equivalence for a model of independent non identically distributed observations, Statistics and Decisions, Volume 21 (2003) no. 3, pp. 197-218
[9] Komlós–Major–Tusnády approximation for the general empirical process and Haar expansions of classes of functions, J. Theoret. Probab., Volume 7 (1994) no. 1, pp. 73-118
[10] An approximation of partial sums of independent r.v.'s and the sample df. I, Z. Wahr. Verw. Gebiete, Volume 32 (1975), pp. 111-131
[11] Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist., Volume 24 (1996), pp. 2399-2430
[12] Local invariance principles and their application to density estimation, Probab. Theory Related Fields, Volume 98 (1994), pp. 21-45
[13] Empirical Processes with Applications to Statistics, Wiley, New York, 1986
Cited by Sources:
Comments - Policy