[Une construction hongroise fonctionnelle pour le processus empirique séquentiel]
We establish a KMT coupling for the sequential empirical process and the Kiefer–Müller process. The processes are indexed by functions f from a Hölder class
Nous établissons un couplage KMT pour le processus empirique séquentiel et le processus de Kiefer–Müller. Les processus sont indexés par des fonctions f appartenant à une classe de Hölder
Accepté le :
Publié le :
Michael Jähnisch 1 ; Michael Nussbaum 2
@article{CRMATH_2005__341_12_761_0, author = {Michael J\"ahnisch and Michael Nussbaum}, title = {A functional {Hungarian} construction for the sequential empirical process}, journal = {Comptes Rendus. Math\'ematique}, pages = {761--763}, publisher = {Elsevier}, volume = {341}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.10.022}, language = {en}, }
TY - JOUR AU - Michael Jähnisch AU - Michael Nussbaum TI - A functional Hungarian construction for the sequential empirical process JO - Comptes Rendus. Mathématique PY - 2005 SP - 761 EP - 763 VL - 341 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2005.10.022 LA - en ID - CRMATH_2005__341_12_761_0 ER -
Michael Jähnisch; Michael Nussbaum. A functional Hungarian construction for the sequential empirical process. Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 761-763. doi : 10.1016/j.crma.2005.10.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.022/
[1] Hungarian constructions from the non-asymptotic viewpoint, Ann. Probab., Volume 17 (1989), pp. 239-256
[2] Strong approximation of bivariate uniform empirical processes, Ann. Inst. H. Poincaré Probab. Statist., Volume 34 (1998), pp. 425-480
[3] Real Analysis and Probability, Wadsworth Brooks/Cole, Pacific Grove, CA, 1989
[4] A functional Hungarian construction for sums of independent random variables, Ann. Inst. H. Poincaré Probab. Statist., Volume 38 (2002), pp. 923-957
[5] Asymptotic equivalence for nonparametric generalized linear models, Probab. Theory Related Fields, Volume 111 (1998), pp. 167-214
[6] Asymptotic equivalence for nonparametric regression, Math. Methods Statist., Volume 11 (2002) no. 1, pp. 1-36
[7] M. Jähnisch, Asymptotische Äquivalenz für ein Modell unabhängiger nicht identisch verteilter Daten, Doctoral Thesis, Humboldt Universität zu Berlin, 1999
[8] Asymptotic equivalence for a model of independent non identically distributed observations, Statistics and Decisions, Volume 21 (2003) no. 3, pp. 197-218
[9] Komlós–Major–Tusnády approximation for the general empirical process and Haar expansions of classes of functions, J. Theoret. Probab., Volume 7 (1994) no. 1, pp. 73-118
[10] An approximation of partial sums of independent r.v.'s and the sample df. I, Z. Wahr. Verw. Gebiete, Volume 32 (1975), pp. 111-131
[11] Asymptotic equivalence of density estimation and Gaussian white noise, Ann. Statist., Volume 24 (1996), pp. 2399-2430
[12] Local invariance principles and their application to density estimation, Probab. Theory Related Fields, Volume 98 (1994), pp. 21-45
[13] Empirical Processes with Applications to Statistics, Wiley, New York, 1986
Cité par Sources :
Commentaires - Politique