Dans cette Note nous discrétisons des équations différentielles stochastiques associées à des équations aux dérivées partielles paraboliques unidimensionnelles avec opérateur sous forme divergence dont le coefficient est discontinu en 0. Nous établissons la vitesse de convergence au sens faible.
In this Note, we discretize stochastic differential equations related to one-dimensional parabolic partial differential equations with a divergence form operator whose coefficient is discontinuous at 0. We establish the convergence rate in a weak sense.
Accepté le :
Publié le :
Miguel Martinez 1 ; Denis Talay 1
@article{CRMATH_2006__342_1_51_0, author = {Miguel Martinez and Denis Talay}, title = {Discr\'etisation d'\'equations diff\'erentielles stochastiques unidimensionnelles \`a g\'en\'erateur sous forme divergence avec coefficient discontinu}, journal = {Comptes Rendus. Math\'ematique}, pages = {51--56}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2005.10.025}, language = {fr}, }
TY - JOUR AU - Miguel Martinez AU - Denis Talay TI - Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu JO - Comptes Rendus. Mathématique PY - 2006 SP - 51 EP - 56 VL - 342 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2005.10.025 LA - fr ID - CRMATH_2006__342_1_51_0 ER -
%0 Journal Article %A Miguel Martinez %A Denis Talay %T Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu %J Comptes Rendus. Mathématique %D 2006 %P 51-56 %V 342 %N 1 %I Elsevier %R 10.1016/j.crma.2005.10.025 %G fr %F CRMATH_2006__342_1_51_0
Miguel Martinez; Denis Talay. Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 51-56. doi : 10.1016/j.crma.2005.10.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.025/
[1] P. Etoré, On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients (2005), submitted for publication
[2] Dirichlet Forms and Symmetric Markov Processes, de Gruyter Stud. Math., vol. 19, Walter de Gruyter, 1994
[3] A. Lejay, M. Martinez, A scheme for simulating one-dimensional diffusions with discontinuous coefficients, Annals Appl. Prob. (2005), in press
[4] M. Martinez, Interprétations probabilistes d'opérateurs sous forme divergence et analyse de méthodes numériques probabilistes associées, Ph.D. Thesis, université de Provence, 2004
[5] M. Martinez, D. Talay, Convergence rate of a Euler discretization scheme for one-dimensional stochastic differential equations whose generators are divergence form with a discontinuous coefficient, in preparation
[6] Un cours sur les intégrales stochastiques, Sém. Prob. X, Lecture Notes in Math., vol. 511, Springer, 1976, pp. 245-400
[7] Le ‘skew-Brownian motion’ et les processus qui en dérivent, Teor. Veroyatnost. i Primenen., Volume 35 (1990) no. 1, pp. 173-179
[8] Stochastic representation of reflecting diffusions corresponding to divergence form operators, Stud. Math., Volume 139 (2000) no. 2, pp. 141-174
[9] Probabilistic numerical methods for partial differential equations: Elements of analysis (D. Talay; L. Tubaro, eds.), Probabilistic Models for Nonlinear Partial Differential Equations and Numerical Applications, Lecture Notes in Math., vol. 1627, Springer, 1996, pp. 48-196
[10] The Euler scheme with irregular coefficients, Ann. Probab., Volume 30 (2002) no. 3, pp. 1172-1194
- A transformed stochastic Euler scheme for multidimensional transmission PDE, Journal of Computational and Applied Mathematics, Volume 394 (2021), p. 28 (Id/No 113551) | DOI:10.1016/j.cam.2021.113551 | Zbl:1475.65067
- An Euler-Maruyama method for diffusion equations with discontinuous coefficients and a family of interface conditions, Journal of Computational and Applied Mathematics, Volume 368 (2020), p. 18 (Id/No 112545) | DOI:10.1016/j.cam.2019.112545 | Zbl:1443.60059
- Time inhomogeneous stochastic differential equations involving the local time of the unknown process, and associated parabolic operators, Stochastic Processes and their Applications, Volume 128 (2018) no. 8, pp. 2642-2687 | DOI:10.1016/j.spa.2017.09.018 | Zbl:1396.60066
- Simulating diffusion processes in discontinuous media: benchmark tests, Journal of Computational Physics, Volume 314 (2016), pp. 384-413 | DOI:10.1016/j.jcp.2016.03.003 | Zbl:1349.65019
- New Monte Carlo schemes for simulating diffusions in discontinuous media, Journal of Computational and Applied Mathematics, Volume 245 (2013), p. 97 | DOI:10.1016/j.cam.2012.12.013
- One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-1905
- Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps, Journal of Computational Physics, Volume 231 (2012) no. 21, pp. 7299-7314 | DOI:10.1016/j.jcp.2012.07.011 | Zbl:1284.65007
- Simulation of a stochastic process in a discontinuous layered medium, Electronic Communications in Probability, Volume 16 (2011) no. none | DOI:10.1214/ecp.v16-1686
- Simulating diffusions with piecewise constant coefficients using a kinetic approximation, Computer Methods in Applied Mechanics and Engineering, Volume 199 (2010) no. 29-32, pp. 2014-2023 | DOI:10.1016/j.cma.2010.03.002 | Zbl:1231.76241
- Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 5, pp. 997-1048 | DOI:10.1051/m2an/2010050 | Zbl:1204.82020
- A donsker theorem to simulate one-dimensional processes with measurable coefficients, European Series in Applied and Industrial Mathematics (ESAIM): Probability and Statistics, Volume 11 (2007), pp. 301-326 | DOI:10.1051/ps:2007021 | Zbl:1181.60123
- On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients, Electronic Journal of Probability, Volume 11 (2006) no. none | DOI:10.1214/ejp.v11-311
- Discretization of one-dimensional stochastic differential equations whose generators are divergence form with a discontinuous coefficient, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 342 (2005) no. 1, pp. 51-56 | DOI:10.1016/j.crma.2005.10.025 | Zbl:1082.60514
Cité par 13 documents. Sources : Crossref, zbMATH
Commentaires - Politique