Comptes Rendus
Probabilités
Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu
Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 51-56.

Dans cette Note nous discrétisons des équations différentielles stochastiques associées à des équations aux dérivées partielles paraboliques unidimensionnelles avec opérateur sous forme divergence dont le coefficient est discontinu en 0. Nous établissons la vitesse de convergence au sens faible.

In this Note, we discretize stochastic differential equations related to one-dimensional parabolic partial differential equations with a divergence form operator whose coefficient is discontinuous at 0. We establish the convergence rate in a weak sense.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.10.025

Miguel Martinez 1 ; Denis Talay 1

1 INRIA, 2004, route des Lucioles, BP 93, 06902 Sophia Antipolis, France
@article{CRMATH_2006__342_1_51_0,
     author = {Miguel Martinez and Denis Talay},
     title = {Discr\'etisation d'\'equations diff\'erentielles stochastiques unidimensionnelles \`a g\'en\'erateur sous forme divergence avec coefficient discontinu},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {51--56},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2006},
     doi = {10.1016/j.crma.2005.10.025},
     language = {fr},
}
TY  - JOUR
AU  - Miguel Martinez
AU  - Denis Talay
TI  - Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 51
EP  - 56
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2005.10.025
LA  - fr
ID  - CRMATH_2006__342_1_51_0
ER  - 
%0 Journal Article
%A Miguel Martinez
%A Denis Talay
%T Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu
%J Comptes Rendus. Mathématique
%D 2006
%P 51-56
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crma.2005.10.025
%G fr
%F CRMATH_2006__342_1_51_0
Miguel Martinez; Denis Talay. Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 51-56. doi : 10.1016/j.crma.2005.10.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.025/

[1] P. Etoré, On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients (2005), submitted for publication

[2] M. Fukushima; Y. Oshima; M. Takeda Dirichlet Forms and Symmetric Markov Processes, de Gruyter Stud. Math., vol. 19, Walter de Gruyter, 1994

[3] A. Lejay, M. Martinez, A scheme for simulating one-dimensional diffusions with discontinuous coefficients, Annals Appl. Prob. (2005), in press

[4] M. Martinez, Interprétations probabilistes d'opérateurs sous forme divergence et analyse de méthodes numériques probabilistes associées, Ph.D. Thesis, université de Provence, 2004

[5] M. Martinez, D. Talay, Convergence rate of a Euler discretization scheme for one-dimensional stochastic differential equations whose generators are divergence form with a discontinuous coefficient, in preparation

[6] P.A. Meyer Un cours sur les intégrales stochastiques, Sém. Prob. X, Lecture Notes in Math., vol. 511, Springer, 1976, pp. 245-400

[7] Y. Ouknine Le ‘skew-Brownian motion’ et les processus qui en dérivent, Teor. Veroyatnost. i Primenen., Volume 35 (1990) no. 1, pp. 173-179

[8] A. Rozkosz; L. Słomiński Stochastic representation of reflecting diffusions corresponding to divergence form operators, Stud. Math., Volume 139 (2000) no. 2, pp. 141-174

[9] D. Talay Probabilistic numerical methods for partial differential equations: Elements of analysis (D. Talay; L. Tubaro, eds.), Probabilistic Models for Nonlinear Partial Differential Equations and Numerical Applications, Lecture Notes in Math., vol. 1627, Springer, 1996, pp. 48-196

[10] L. Yan The Euler scheme with irregular coefficients, Ann. Probab., Volume 30 (2002) no. 3, pp. 1172-1194

  • Pierre Étoré; Miguel Martinez A transformed stochastic Euler scheme for multidimensional transmission PDE, Journal of Computational and Applied Mathematics, Volume 394 (2021), p. 28 (Id/No 113551) | DOI:10.1016/j.cam.2021.113551 | Zbl:1475.65067
  • V. A. Bokil; N. L. Gibson; S. L. Nguyen; E. A. Thomann; E. C. Waymire An Euler-Maruyama method for diffusion equations with discontinuous coefficients and a family of interface conditions, Journal of Computational and Applied Mathematics, Volume 368 (2020), p. 18 (Id/No 112545) | DOI:10.1016/j.cam.2019.112545 | Zbl:1443.60059
  • Pierre Étoré; Miguel Martinez Time inhomogeneous stochastic differential equations involving the local time of the unknown process, and associated parabolic operators, Stochastic Processes and their Applications, Volume 128 (2018) no. 8, pp. 2642-2687 | DOI:10.1016/j.spa.2017.09.018 | Zbl:1396.60066
  • Antoine Lejay; Géraldine Pichot Simulating diffusion processes in discontinuous media: benchmark tests, Journal of Computational Physics, Volume 314 (2016), pp. 384-413 | DOI:10.1016/j.jcp.2016.03.003 | Zbl:1349.65019
  • Antoine Lejay; Sylvain Maire New Monte Carlo schemes for simulating diffusions in discontinuous media, Journal of Computational and Applied Mathematics, Volume 245 (2013), p. 97 | DOI:10.1016/j.cam.2012.12.013
  • Miguel Martinez; Denis Talay One-dimensional parabolic diffraction equations: pointwise estimates and discretization of related stochastic differential equations with weighted local times, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-1905
  • Antoine Lejay; Géraldine Pichot Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps, Journal of Computational Physics, Volume 231 (2012) no. 21, pp. 7299-7314 | DOI:10.1016/j.jcp.2012.07.011 | Zbl:1284.65007
  • Antoine Lejay Simulation of a stochastic process in a discontinuous layered medium, Electronic Communications in Probability, Volume 16 (2011) no. none | DOI:10.1214/ecp.v16-1686
  • Antoine Lejay; Sylvain Maire Simulating diffusions with piecewise constant coefficients using a kinetic approximation, Computer Methods in Applied Mechanics and Engineering, Volume 199 (2010) no. 29-32, pp. 2014-2023 | DOI:10.1016/j.cma.2010.03.002 | Zbl:1231.76241
  • Mireille Bossy; Nicolas Champagnat; Sylvain Maire; Denis Talay Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 5, pp. 997-1048 | DOI:10.1051/m2an/2010050 | Zbl:1204.82020
  • Pierre Étoré; Antoine Lejay A donsker theorem to simulate one-dimensional processes with measurable coefficients, European Series in Applied and Industrial Mathematics (ESAIM): Probability and Statistics, Volume 11 (2007), pp. 301-326 | DOI:10.1051/ps:2007021 | Zbl:1181.60123
  • Pierre Etoré On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients, Electronic Journal of Probability, Volume 11 (2006) no. none | DOI:10.1214/ejp.v11-311
  • Miguel Martinez; Denis Talay Discretization of one-dimensional stochastic differential equations whose generators are divergence form with a discontinuous coefficient, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 342 (2005) no. 1, pp. 51-56 | DOI:10.1016/j.crma.2005.10.025 | Zbl:1082.60514

Cité par 13 documents. Sources : Crossref, zbMATH

Commentaires - Politique