Let M be a n-dimensional Kähler manifold with numerically effective Ricci class . In this Note we prove that, if the first Betti number is equal to 2n, then M is biholomorphic to a n-dimensional complex torus.
Soit M une variété kählérienne compacte de dimension n et de classe de Ricci numériquement effective. Dans cette note nous montrons que si le premier nombre de Betti est égal à 2n, alors M est biholomorphe à un tore complexe de dimension n.
Accepted:
Published online:
Fuquan Fang 1, 2
@article{CRMATH_2006__342_6_411_0, author = {Fuquan Fang}, title = {K\"ahler manifolds with numerically effective {Ricci} class and maximal first {Betti} number are tori}, journal = {Comptes Rendus. Math\'ematique}, pages = {411--416}, publisher = {Elsevier}, volume = {342}, number = {6}, year = {2006}, doi = {10.1016/j.crma.2005.11.019}, language = {en}, }
Fuquan Fang. Kähler manifolds with numerically effective Ricci class and maximal first Betti number are tori. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 411-416. doi : 10.1016/j.crma.2005.11.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.019/
[1] Équations du type Monge–Ampère sur les variétés kählérienne compactes, Bull. Sci. Math. France, Volume 102 (1978), pp. 63-95
[2] Remarques sur les groupes de Kähler nilpotents, Ann. Sci. École Norm. Sup., Volume 28 (1995), pp. 307-316
[3] Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. Math., Volume 144 (1996), pp. 189-237
[4] Ricci curvature and volume convergence, Ann. Math., Volume 145 (1997), pp. 477-501
[5] Kähler manifolds with numerically effective Ricci class, Comp. Math., Volume 89 (1993), pp. 217-240
[6] Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Volume 3 (1994), pp. 295-345
[7] The fundamental groups of almost non-negatively curved manifolds, Ann. of Math., Volume 136 (1992), pp. 253-333
[8] Group of polynomial growth and expanding maps, Publ. Math. IHES, Volume 53 (1981), pp. 53-73
[9] Structures métriques pour les variétés riemannienes, CedicFernand, Paris, 1981
[10] Bounds on the dimension of -holomorphic sections of vector bundles over complete Kähler manifolds of finite volume, Math. Z., Volume 191 (1986), pp. 303-317
[11] Sur le groupe fondamental des variétés kählériennes compactes à classe de Ricci numériquement effective, C. R. Acad. Paris, Ser. I, Volume 324 (1997), pp. 1249-1254
[12] Sur variétés kählériennes compactes à classe de Ricci numériquement effective, Bull. Sci. Math., Volume 122 (1998), pp. 83-92
[13] On the Albanese map of compact Kähler manifolds with numerically effective Ricci curvature, Comm. Anal. Geom., Volume 9 (2001), pp. 35-60
[14] On the Ricci curvature of a complex Kähler manifold and the complex Monge–Ampére equation I, Comm. Pure Appl. Math., Volume 31 (1978), pp. 339-411
[15] On projective manifolds with nef anticanonical bundle, J. Reine. Angew. Math., Volume 478 (1996), pp. 57-60
Cited by Sources:
Comments - Policy