Comptes Rendus
Algebraic Geometry/Differential Geometry
Kähler manifolds with numerically effective Ricci class and maximal first Betti number are tori
Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 411-416.

Let M be a n-dimensional Kähler manifold with numerically effective Ricci class c1(M). In this Note we prove that, if the first Betti number b1(M) is equal to 2n, then M is biholomorphic to a n-dimensional complex torus.

Soit M une variété kählérienne compacte de dimension n et de classe de Ricci c1(M) numériquement effective. Dans cette note nous montrons que si le premier nombre de Betti b1(M) est égal à 2n, alors M est biholomorphe à un tore complexe de dimension n.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.11.019

Fuquan Fang 1, 2

1 Department of Mathematics, Capital Normal University, Beijing 100037, PR China
2 Chern Institute of Mathematics, Nankai University, Tianjin 300071, PR China
@article{CRMATH_2006__342_6_411_0,
     author = {Fuquan Fang},
     title = {K\"ahler manifolds with numerically effective {Ricci} class and maximal first {Betti} number are tori},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {411--416},
     publisher = {Elsevier},
     volume = {342},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2005.11.019},
     language = {en},
}
TY  - JOUR
AU  - Fuquan Fang
TI  - Kähler manifolds with numerically effective Ricci class and maximal first Betti number are tori
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 411
EP  - 416
VL  - 342
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2005.11.019
LA  - en
ID  - CRMATH_2006__342_6_411_0
ER  - 
%0 Journal Article
%A Fuquan Fang
%T Kähler manifolds with numerically effective Ricci class and maximal first Betti number are tori
%J Comptes Rendus. Mathématique
%D 2006
%P 411-416
%V 342
%N 6
%I Elsevier
%R 10.1016/j.crma.2005.11.019
%G en
%F CRMATH_2006__342_6_411_0
Fuquan Fang. Kähler manifolds with numerically effective Ricci class and maximal first Betti number are tori. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 411-416. doi : 10.1016/j.crma.2005.11.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.019/

[1] T. Aubin Équations du type Monge–Ampère sur les variétés kählérienne compactes, Bull. Sci. Math. France, Volume 102 (1978), pp. 63-95

[2] F. Campana Remarques sur les groupes de Kähler nilpotents, Ann. Sci. École Norm. Sup., Volume 28 (1995), pp. 307-316

[3] J. Cheeger; T. Colding Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. Math., Volume 144 (1996), pp. 189-237

[4] T. Colding Ricci curvature and volume convergence, Ann. Math., Volume 145 (1997), pp. 477-501

[5] J.P. Demailly; T. Peternell; M. Schneider Kähler manifolds with numerically effective Ricci class, Comp. Math., Volume 89 (1993), pp. 217-240

[6] J.P. Demailly; T. Peternell; M. Schneider Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Volume 3 (1994), pp. 295-345

[7] K. Fukaya; T. Yamaguchi The fundamental groups of almost non-negatively curved manifolds, Ann. of Math., Volume 136 (1992), pp. 253-333

[8] M. Gromov Group of polynomial growth and expanding maps, Publ. Math. IHES, Volume 53 (1981), pp. 53-73

[9] M. Gromov; J. Lafontaine; P. Pansu Structures métriques pour les variétés riemannienes, CedicFernand, Paris, 1981

[10] N. Mok Bounds on the dimension of L2-holomorphic sections of vector bundles over complete Kähler manifolds of finite volume, Math. Z., Volume 191 (1986), pp. 303-317

[11] M. Paun Sur le groupe fondamental des variétés kählériennes compactes à classe de Ricci numériquement effective, C. R. Acad. Paris, Ser. I, Volume 324 (1997), pp. 1249-1254

[12] M. Paun Sur variétés kählériennes compactes à classe de Ricci numériquement effective, Bull. Sci. Math., Volume 122 (1998), pp. 83-92

[13] M. Paun On the Albanese map of compact Kähler manifolds with numerically effective Ricci curvature, Comm. Anal. Geom., Volume 9 (2001), pp. 35-60

[14] S.T. Yau On the Ricci curvature of a complex Kähler manifold and the complex Monge–Ampére equation I, Comm. Pure Appl. Math., Volume 31 (1978), pp. 339-411

[15] Q. Zhang On projective manifolds with nef anticanonical bundle, J. Reine. Angew. Math., Volume 478 (1996), pp. 57-60

Cited by Sources:

Comments - Policy