Seidel introduced a homomorphism from the fundamental group of the group of Hamiltonian diffeomorphisms of certain compact symplectic manifolds to a quotient of the automorphism group of the Floer homology . We prove a rigidity property: if two Hamiltonian loops represent the same element in , then the image under the Seidel homomorphism of their classes in coincide. The proof consists in showing that Floer homology can be defined by using ‘almost Hamiltonian’ isotopies, i.e. isotopies that are homotopic relatively to endpoints to Hamiltonian isotopies.
Seidel a introduit un homomorphisme du groupe fondamental du groupe des difféomorphismes Hamiltoniennes de certaines variétés symplectiques compactes dans un quotient du groupe des automorphismes de l'homologie de Floer . Nous démontrons que si deux lacets Hamiltoniennes representent le même élément dans , alors les images par l'homomorphisme de Seidel de leurs classes dans coïncident (un phénomène de rigidité). La preuve consiste à montrer que l'homologie de Floer peut être définie en utilisant des isotopies presques Hamiltoniennes, c'est-à-dire des isotopies qui sont homotopes, relativement aux extrémités à des isotopies Hamiltoniennes.
Accepted:
Published online:
Augustin Banyaga 1; Christopher Saunders 2
@article{CRMATH_2006__342_6_417_0, author = {Augustin Banyaga and Christopher Saunders}, title = {Floer homology for almost {Hamiltonian} isotopies}, journal = {Comptes Rendus. Math\'ematique}, pages = {417--420}, publisher = {Elsevier}, volume = {342}, number = {6}, year = {2006}, doi = {10.1016/j.crma.2006.01.001}, language = {en}, }
Augustin Banyaga; Christopher Saunders. Floer homology for almost Hamiltonian isotopies. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 417-420. doi : 10.1016/j.crma.2006.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.001/
[1] The Structure of Classical Diffeomorphism Groups, Kluwer Academic Press, 1997
[2] Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., Volume 120 (1989), pp. 575-611
[3] Floer homology and Novikov rings, The Floer Memorial Volume, Birkhäuser, Basel, 1995, pp. 483-524
[4] Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math., Volume 135 (1999) no. 2, pp. 369-385
[5] Lectures on Floer homology, Symplectic Geometry and Topology, Park City, UT, 1997, IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 143-229
[6] of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal., Volume 7 (1997), pp. 1046-1095
Cited by Sources:
Comments - Policy