Comptes Rendus
Differential Geometry
Floer homology for almost Hamiltonian isotopies
Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 417-420.

Seidel introduced a homomorphism from the fundamental group π1(Ham(M)) of the group of Hamiltonian diffeomorphisms of certain compact symplectic manifolds (M,ω) to a quotient of the automorphism group Aut(HF(M,ω)) of the Floer homology HF(M,ω). We prove a rigidity property: if two Hamiltonian loops represent the same element in π1(Diff(M)), then the image under the Seidel homomorphism of their classes in π1(Ham(M)) coincide. The proof consists in showing that Floer homology can be defined by using ‘almost Hamiltonian’ isotopies, i.e. isotopies that are homotopic relatively to endpoints to Hamiltonian isotopies.

Seidel a introduit un homomorphisme du groupe fondamental π1(Ham(M)) du groupe des difféomorphismes Hamiltoniennes de certaines variétés symplectiques compactes (M,ω) dans un quotient du groupe Aut(HF(M,ω)) des automorphismes de l'homologie de Floer HF(M,ω). Nous démontrons que si deux lacets Hamiltoniennes representent le même élément dans π1(Diff(M)), alors les images par l'homomorphisme de Seidel de leurs classes dans π1(Ham(M)) coïncident (un phénomène de rigidité). La preuve consiste à montrer que l'homologie de Floer peut être définie en utilisant des isotopies presques Hamiltoniennes, c'est-à-dire des isotopies qui sont homotopes, relativement aux extrémités à des isotopies Hamiltoniennes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.01.001

Augustin Banyaga 1; Christopher Saunders 2

1 Department of Mathematics, Pennsylvania State University, 218 McAllister Building, University Park, PA 16803, USA
2 Department of Mathematics, Westminster College, Fulton, MO 65251, USA
@article{CRMATH_2006__342_6_417_0,
     author = {Augustin Banyaga and Christopher Saunders},
     title = {Floer homology for almost {Hamiltonian} isotopies},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {417--420},
     publisher = {Elsevier},
     volume = {342},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2006.01.001},
     language = {en},
}
TY  - JOUR
AU  - Augustin Banyaga
AU  - Christopher Saunders
TI  - Floer homology for almost Hamiltonian isotopies
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 417
EP  - 420
VL  - 342
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2006.01.001
LA  - en
ID  - CRMATH_2006__342_6_417_0
ER  - 
%0 Journal Article
%A Augustin Banyaga
%A Christopher Saunders
%T Floer homology for almost Hamiltonian isotopies
%J Comptes Rendus. Mathématique
%D 2006
%P 417-420
%V 342
%N 6
%I Elsevier
%R 10.1016/j.crma.2006.01.001
%G en
%F CRMATH_2006__342_6_417_0
Augustin Banyaga; Christopher Saunders. Floer homology for almost Hamiltonian isotopies. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 417-420. doi : 10.1016/j.crma.2006.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.001/

[1] A. Banyaga The Structure of Classical Diffeomorphism Groups, Kluwer Academic Press, 1997

[2] A. Floer Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., Volume 120 (1989), pp. 575-611

[3] H. Hofer; D. Salamon Floer homology and Novikov rings, The Floer Memorial Volume, Birkhäuser, Basel, 1995, pp. 483-524

[4] F. Lalonde; D. McDuff; L. Polterovich Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math., Volume 135 (1999) no. 2, pp. 369-385

[5] D. Salamon Lectures on Floer homology, Symplectic Geometry and Topology, Park City, UT, 1997, IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 143-229

[6] P. Seidel π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal., Volume 7 (1997), pp. 1046-1095

Cited by Sources:

Comments - Policy