Comptes Rendus
Probability Theory
Invariance principle for a class of non stationary processes with long memory
[Principe d'invariance pour des processus non stationnaires à longue mémoire]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 269-274.

Nous étudions une famille de processus non stationnaires à longue mémoire. Nous prouvons un théorème limite fonctionnel pour le processus des sommes partielles.

We prove a functional central limit theorem for the partial sums of a class of time varying processes with long memory.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.12.001

Anne Philippe 1 ; Donatas Surgailis 2 ; Marie-Claude Viano 3

1 Université de Nantes, laboratoire de mathématiques Jean-Leray, UMR CNRS 6629, 2, rue de la Houssinière, BP 92208, 44322 Nantes cedex 3, France
2 Vilnius Institute of Mathematics and Informatics, 2600 Vilnius, Lithuania
3 Université de Lille 1, laboratoire Paul-Painlevé UMR CNRS 8524, bâtiment M2, 59655 Villeneuve d'Ascq cedex, France
@article{CRMATH_2006__342_4_269_0,
     author = {Anne Philippe and Donatas Surgailis and Marie-Claude Viano},
     title = {Invariance principle for a class of non stationary processes with long memory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {269--274},
     publisher = {Elsevier},
     volume = {342},
     number = {4},
     year = {2006},
     doi = {10.1016/j.crma.2005.12.001},
     language = {en},
}
TY  - JOUR
AU  - Anne Philippe
AU  - Donatas Surgailis
AU  - Marie-Claude Viano
TI  - Invariance principle for a class of non stationary processes with long memory
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 269
EP  - 274
VL  - 342
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2005.12.001
LA  - en
ID  - CRMATH_2006__342_4_269_0
ER  - 
%0 Journal Article
%A Anne Philippe
%A Donatas Surgailis
%A Marie-Claude Viano
%T Invariance principle for a class of non stationary processes with long memory
%J Comptes Rendus. Mathématique
%D 2006
%P 269-274
%V 342
%N 4
%I Elsevier
%R 10.1016/j.crma.2005.12.001
%G en
%F CRMATH_2006__342_4_269_0
Anne Philippe; Donatas Surgailis; Marie-Claude Viano. Invariance principle for a class of non stationary processes with long memory. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 269-274. doi : 10.1016/j.crma.2005.12.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.001/

[1] P. Billingsley Convergence of Probability Measures, John Wiley & Sons Inc., New York, 1968

[2] P.J. Brockwell; R.A. Davis Time Series: Theory and Methods, Springer-Verlag, New York, 1991

[3] A. Philippe, D. Surgailis, M.-C. Viano, Time-varying fractionally integrated processes with nonstationary long memory, Technical report, Pub. IRMA Lille, 61(9), 2004

[4] D. Surgailis Non-CLTs: U-statistics, multinomial formula and approximations of multiple Itô-Wiener integrals (P. Doukhan et al., eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, MA, 2003, pp. 129-142

[5] M.S. Taqqu Fractional Brownian motion and long-range dependence (P. Doukhan et al., eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, MA, 2003, pp. 5-38

Cité par Sources :

The research is supported by joint Lithuania and France scientific program PAI EGIDE 09393 ZF.

Commentaires - Politique