In this Note we first introduce the concept of pullback asymptotic compactness. Next, we establish a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. Finally, we prove the existence of a pullback attractor for a non-autonomous 2D Navier–Stokes model in an unbounded domain, a case in which the theory of uniform attractors does not work since the non-autonomous term is quite general.
Dans cette Note, on présente d'abord la notion de compacité asymptotique pullback. On établit ensuite un résultat d'existence d'un attracteur pullback pour un système dynamique non autonome, sous les hypothèses de compacité asymptotique pullback et d'existence d'une famille d'ensembles absorbants au sens pullback. On prouve finalement l'existence d'un attracteur pullback pour un système de Navier–Stokes bidimensionel non autonome dans un domaine non borné, une situation dans laquelle, étant donnée la généralité du terme non autonome, la théorie des attracteurs uniformes ne peut pas être appliquée.
Accepted:
Published online:
Tomás Caraballo 1; Grzegorz Łukaszewicz 2; José Real 1
@article{CRMATH_2006__342_4_263_0, author = {Tom\'as Caraballo and Grzegorz {\L}ukaszewicz and Jos\'e Real}, title = {Pullback attractors for non-autonomous {2D-Navier{\textendash}Stokes} equations in some unbounded domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {263--268}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2005.12.015}, language = {en}, }
TY - JOUR AU - Tomás Caraballo AU - Grzegorz Łukaszewicz AU - José Real TI - Pullback attractors for non-autonomous 2D-Navier–Stokes equations in some unbounded domains JO - Comptes Rendus. Mathématique PY - 2006 SP - 263 EP - 268 VL - 342 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2005.12.015 LA - en ID - CRMATH_2006__342_4_263_0 ER -
%0 Journal Article %A Tomás Caraballo %A Grzegorz Łukaszewicz %A José Real %T Pullback attractors for non-autonomous 2D-Navier–Stokes equations in some unbounded domains %J Comptes Rendus. Mathématique %D 2006 %P 263-268 %V 342 %N 4 %I Elsevier %R 10.1016/j.crma.2005.12.015 %G en %F CRMATH_2006__342_4_263_0
Tomás Caraballo; Grzegorz Łukaszewicz; José Real. Pullback attractors for non-autonomous 2D-Navier–Stokes equations in some unbounded domains. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 263-268. doi : 10.1016/j.crma.2005.12.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.015/
[1] Global attractors for damped semilinear wave equations, Discrete Contin. Dynam. Systems, Volume 10 (2004) no. 1–2, pp. 31-52
[2] On the upper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems, Dynam. Contin. Discrete Impuls. Systems A, Volume 10 (2003), pp. 491-514
[3] T. Caraballo, G. Łukaszewicz, J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, manuscript, Technical Report no. 141 of the Institute of Applied Mathematics and Mechanics, University of Warsaw
[4] Attractors for Equations of Mathematical Physics, Colloq. Publ., vol. 49, American Mathematical Society, Providence, RI, 2002
[5] Random attractors, J. Dynam. Differential Equations, Volume 9 (1995) no. 2, pp. 307-341
[6] Asymptotic behaviour of nonautonomous difference inclusions, Systems Control Lett., Volume 33 (1998) no. 4, pp. 275-280
[7] Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations, Stochastics and Dynamics, Volume 4 (2004) no. 3, pp. 385-404
[8] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969
[9] Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains, Z. Angew. Math. Phys., Volume 55 (2004), pp. 1-11
[10] Attractors for noncompact nonautonomous systems via energy equations, Discrete Contin. Dynam. Systems, Volume 10 (2004) no. 1 & 2, pp. 473-496
[11] The global attractor for the 2D Navier–Stokes flow on some unbounded domains, Nonlinear Anal., Volume 32 (1998) no. 1, pp. 71-85
[12] Attractors for non-autonomous dynamical systems (B. Fiedler; K. Gröger; J. Sprekels, eds.), Proc. Equadiff 99, Berlin, World Scientific, 2000, pp. 684-689
[13] Non-autonomous differential equations and topological dynamics, I, II, Trans. Amer. Math. Soc., Volume 127 (1967), pp. 241-262 (263–283)
[14] Navier–Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1979
Cited by Sources:
Comments - Policy