Comptes Rendus
Partial Differential Equations/Functional Analysis
Convex Sobolev inequalities and spectral gap
Comptes Rendus. Mathématique, Volume 342 (2006) no. 5, pp. 307-312.

This Note is devoted to the proof of convex Sobolev (or generalized Poincaré) inequalities which interpolate between spectral gap (or Poincaré) inequalities and logarithmic Sobolev inequalities. We extend to the whole family of convex Sobolev inequalities results which have recently been obtained by Cattiaux, and Carlen and Loss for logarithmic Sobolev inequalities. Under local conditions on the density of the measure with respect to a reference measure, we prove that spectral gap inequalities imply all convex Sobolev inequalities including in the limit case corresponding to the logarithmic Sobolev inequalities.

Cette Note est consacrée à la preuve d'inégalités de Sobolev convexes (ou inégalités de Poincaré généralisées) qui interpolent entre des inégalités de trou spectral (ou de Poincaré) et des inégalités de Sobolev logarithmiques. Nous étendons à la famille des inégalités de Sobolev convexes toute entière des résultats qui ont été obtenus récemment par Cattiaux, et Carlen et Loss pour des inégalités de Sobolev logarithmiques. Sous des conditions locales sur la densité de la mesure par rapport à une mesure de référence, nous démontrons que les inégalités de trou spectral entraînent toutes les inégalités de Sobolev convexes, y compris dans le cas limite des inégalités de Sobolev logarithmiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.12.004

Jean-Philippe Bartier 1, 2; Jean Dolbeault 1

1 Ceremade (UMR CNRS no. 7534), université Paris-Dauphine, place de Lattre de Tassigny, 75775 Paris cedex 16, France
2 Laboratoire de mathématiques appliquées (UMR CNRS no. 7641), université de Versailles, 45, avenue des États-Unis, 78035 Versailles, France
@article{CRMATH_2006__342_5_307_0,
     author = {Jean-Philippe Bartier and Jean Dolbeault},
     title = {Convex {Sobolev} inequalities and spectral gap},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {307--312},
     publisher = {Elsevier},
     volume = {342},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crma.2005.12.004},
     language = {en},
}
TY  - JOUR
AU  - Jean-Philippe Bartier
AU  - Jean Dolbeault
TI  - Convex Sobolev inequalities and spectral gap
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 307
EP  - 312
VL  - 342
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2005.12.004
LA  - en
ID  - CRMATH_2006__342_5_307_0
ER  - 
%0 Journal Article
%A Jean-Philippe Bartier
%A Jean Dolbeault
%T Convex Sobolev inequalities and spectral gap
%J Comptes Rendus. Mathématique
%D 2006
%P 307-312
%V 342
%N 5
%I Elsevier
%R 10.1016/j.crma.2005.12.004
%G en
%F CRMATH_2006__342_5_307_0
Jean-Philippe Bartier; Jean Dolbeault. Convex Sobolev inequalities and spectral gap. Comptes Rendus. Mathématique, Volume 342 (2006) no. 5, pp. 307-312. doi : 10.1016/j.crma.2005.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.004/

[1] A. Arnold; J. Dolbeault Refined convex Sobolev inequalities, J. Funct. Anal., Volume 225 (2005), pp. 337-351

[2] A. Arnold; P. Markowich; G. Toscani; A. Unterreiter On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. Partial Differential Equations, Volume 26 (2001), pp. 43-100

[3] D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes, Saint-Flour, 1992 (Lecture Notes in Math.), Volume vol. 1581, Springer, Berlin (1994), pp. 1-114

[4] D. Bakry; M. Émery Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984), pp. 775-778

[5] F. Barthe, P. Cattiaux, C. Roberto, Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry, Tech. rep., Rev. Mat. Iberoamericana (2005), in press

[6] F. Barthe; C. Roberto Sobolev inequalities for probability measures on the real line, Studia Math., Volume 159 (2003), pp. 481-497 (Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday)

[7] W. Beckner A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc., Volume 105 (1989), pp. 397-400

[8] S.G. Bobkov; F. Götze Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., Volume 163 (1999), pp. 1-28

[9] E. Carlen; M. Loss Logarithmic Sobolev inequalities and spectral gaps, Recent Advances in the Theory and Applications of Mass Transport, Contemp. Math., vol. 353, Amer. Math. Soc., Providence, RI, 2004, pp. 53-60

[10] P. Cattiaux Hypercontractivity for perturbed diffusion semi-groups, Ann. Fac. Sci. Toulouse Math. (6), Volume 14 (2005), pp. 609-628

[11] I. Gentil; A. Guillin; L. Miclo Modified logarithmic Sobolev inequalities and transportation inequalities, Probab. Theory Related Fields, Volume 133 (2005), pp. 409-436

[12] L. Gross Logarithmic Sobolev inequalities, Amer. J. Math., Volume 97 (1975), pp. 1061-1083

[13] R. Holley; D. Stroock Logarithmic Sobolev inequalities and stochastic Ising models, J. Statist. Phys., Volume 46 (1987), pp. 1159-1194

[14] R. Latała; K. Oleszkiewicz Between Sobolev and Poincaré, Geometric Aspects of Functional Analysis, Lecture Notes in Math., vol. 1745, Springer, Berlin, 2000, pp. 147-168

[15] M. Ledoux The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse Math., Volume 9 (2000) no. 6, pp. 305-366

[16] F.-Y. Wang Logarithmic Sobolev inequalities: conditions and counterexamples, J. Operator Theory, Volume 46 (2001), pp. 183-197

[17] F.-Y. Wang A generalization of Poincaré and log-Sobolev inequalities, Potential Anal., Volume 22 (2005), pp. 1-15

Cited by Sources:

Comments - Policy