Near partially elliptic rest points of generic families of vector fields or transformations, many types of normally hyperbolic invariant compact manifolds can appear, diffeomorphic to intersections of quadrics.
Près de points stationnaires partiellement elliptiques de familles génériques de champs de vecteurs ou de transformations apparaissent toutes sortes de variétés compactes invariantes normalement hyperboliques, difféomorphes à des intersections de quadriques.
Accepted:
Published online:
Marc Chaperon 1; Mathilde Kammerer-Colin De Verdière 2; Santiago López De Medrano 3
@article{CRMATH_2006__342_5_301_0, author = {Marc Chaperon and Mathilde Kammerer-Colin De Verdi\`ere and Santiago L\'opez De Medrano}, title = {More compact invariant manifolds appearing in the non-linear coupling of oscillators}, journal = {Comptes Rendus. Math\'ematique}, pages = {301--305}, publisher = {Elsevier}, volume = {342}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2005.12.032}, language = {en}, }
TY - JOUR AU - Marc Chaperon AU - Mathilde Kammerer-Colin De Verdière AU - Santiago López De Medrano TI - More compact invariant manifolds appearing in the non-linear coupling of oscillators JO - Comptes Rendus. Mathématique PY - 2006 SP - 301 EP - 305 VL - 342 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2005.12.032 LA - en ID - CRMATH_2006__342_5_301_0 ER -
%0 Journal Article %A Marc Chaperon %A Mathilde Kammerer-Colin De Verdière %A Santiago López De Medrano %T More compact invariant manifolds appearing in the non-linear coupling of oscillators %J Comptes Rendus. Mathématique %D 2006 %P 301-305 %V 342 %N 5 %I Elsevier %R 10.1016/j.crma.2005.12.032 %G en %F CRMATH_2006__342_5_301_0
Marc Chaperon; Mathilde Kammerer-Colin De Verdière; Santiago López De Medrano. More compact invariant manifolds appearing in the non-linear coupling of oscillators. Comptes Rendus. Mathématique, Volume 342 (2006) no. 5, pp. 301-305. doi : 10.1016/j.crma.2005.12.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.032/
[1] Real quadrics in , complex manifolds and convex polytopes (arXiv) | arXiv
[2] Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-225
[3] Invariant Manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977
[4] Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2004), pp. 625-629
[5] The space of Siegel leaves of a holomorphic vector field, Dynamical Systems, Lecture Notes in Math., vol. 1345, Springer-Verlag, 1988, pp. 233-245
Cited by Sources:
Comments - Policy