[Un cadre fonctionnel pour le système de Keller–Segel : inégalité logarithmique de Hardy–Littlewood–Sobolev et inégalités de trou spectral reliées]
Cette Note est consacrée à plusieurs inégalités fonctionnelles déduites dʼune forme particulière de lʼinégalité logarithmique de Hardy–Littlewood–Sobolev, qui est bien adaptée à la caractérisation des solutions stationnaires dʼun système de Keller–Segel écrit en variables auto-similaires, dans le cas dʼune masse sous-critique. Pour le problème dʼévolution correspondant, ces inégalités fonctionnelles jouent un rôle important dans lʼidentification des taux de convergence des solutions vers la solution stationnaire de même masse.
This Note is devoted to several inequalities deduced from a special form of the logarithmic Hardy–Littlewood–Sobolev, which is well adapted to the characterization of stationary solutions of a Keller–Segel system written in self-similar variables, in case of a subcritical mass. For the corresponding evolution problem, such functional inequalities play an important role for identifying the rate of convergence of the solutions towards the stationary solution with same mass.
Accepté le :
Publié le :
Jean Dolbeault 1 ; Juan Campos 1, 2
@article{CRMATH_2012__350_21-22_949_0, author = {Jean Dolbeault and Juan Campos}, title = {A functional framework for the {Keller{\textendash}Segel} system: {Logarithmic} {Hardy{\textendash}Littlewood{\textendash}Sobolev} and related spectral gap inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {949--954}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.023}, language = {en}, }
TY - JOUR AU - Jean Dolbeault AU - Juan Campos TI - A functional framework for the Keller–Segel system: Logarithmic Hardy–Littlewood–Sobolev and related spectral gap inequalities JO - Comptes Rendus. Mathématique PY - 2012 SP - 949 EP - 954 VL - 350 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2012.10.023 LA - en ID - CRMATH_2012__350_21-22_949_0 ER -
%0 Journal Article %A Jean Dolbeault %A Juan Campos %T A functional framework for the Keller–Segel system: Logarithmic Hardy–Littlewood–Sobolev and related spectral gap inequalities %J Comptes Rendus. Mathématique %D 2012 %P 949-954 %V 350 %N 21-22 %I Elsevier %R 10.1016/j.crma.2012.10.023 %G en %F CRMATH_2012__350_21-22_949_0
Jean Dolbeault; Juan Campos. A functional framework for the Keller–Segel system: Logarithmic Hardy–Littlewood–Sobolev and related spectral gap inequalities. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 949-954. doi : 10.1016/j.crma.2012.10.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.023/
[1] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. of Math. (2), Volume 138 (1993), pp. 213-242
[2] Asymptotic behaviour for small mass in the two-dimensional parabolic–elliptic Keller–Segel model, J. Math. Anal. Appl., Volume 361 (2010), pp. 533-542
[3] Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, Volume 44 (2006), pp. 1-32 (electronic)
[4] Refined asymptotics for the subcritical Keller–Segel system and related functional inequalities, Proc. Amer. Math. Soc., Volume 140 (2012) no. 10, pp. 3515-3530
[5] The parabolic–parabolic Keller–Segel model in , Commun. Math. Sci., Volume 6 (2008), pp. 417-447
[6] J. Campos, J. Dolbeault, Asymptotic estimates for the parabolic–elliptic Keller–Segel model in the plane, preprint, 2012.
[7] Competing symmetries of some functionals arising in mathematical physics, Ascona and Locarno, 1988, World Sci. Publ., Teaneck, NJ (1990), pp. 277-288
[8] The Euclidean Onofri inequality in higher dimensions, Int. Math. Res. Not. (2012) | DOI
[9] Sobolev and Hardy–Littlewood–Sobolev inequalities: duality and fast diffusion, Math. Res. Lett., Volume 18 (2011) no. 6, pp. 1037-1050
[10] Optimal critical mass in the two-dimensional Keller–Segel model in , C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 611-616
[11] The two-dimensional Keller–Segel model after blow-up, Discrete Contin. Dyn. Syst., Volume 25 (2009), pp. 109-121
[12] On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., Volume 86 (1982), pp. 321-326
Cité par Sources :
Commentaires - Politique