[Question de Zariski sur la multiplicité et singularités alignées]
Nous répondons par l'affirmative à la question de Zariski sur la multiplicité pour des classes particulières de singularités non isolées.
We answer positively Zariski's multiplicity question for special classes of nonisolated singularities.
Accepté le :
Publié le :
Christophe Eyral 1
@article{CRMATH_2006__342_3_183_0, author = {Christophe Eyral}, title = {Zariski's multiplicity question and aligned singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {183--186}, publisher = {Elsevier}, volume = {342}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2005.12.008}, language = {en}, }
Christophe Eyral. Zariski's multiplicity question and aligned singularities. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 183-186. doi : 10.1016/j.crma.2005.12.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.008/
[1] O.M. Abderrahmane, On the deformation with constant Milnor number and Newton polyhedron, Preprint, Saitama University, 2004
[2] preservation of multiplicity, Duke Math. J., Volume 43 (1976), pp. 797-803
[3] C. Eyral, Zariski's multiplicity question – a survey, Preprint, Max-Planck Institut für Mathematik, 2005
[4] Constant Milnor number implies constant multiplicity for quasihomogeneous singularities, Manuscripta Math., Volume 56 (1986), pp. 159-166
[5] Advances and improvements in the theory of standard bases and syzygies, Arch. Math., Volume 66 (1996), pp. 163-176
[6] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-32
[7] Topologie des singularités des hypersurfaces complexes, Astérisque, Volume 7/8 (1973), pp. 171-182 (Singularités à Cargèse)
[8] The invariance of Milnor number implies the invariance of the topological type, Amer. J. Math., Volume 98 (1976), pp. 67-78
[9] Lê cycles and hypersurface singularities, Lecture Notes Math., vol. 1615, Springer-Verlag, Berlin, 1995
[10] The Lê–Ramanujam problem for hypersurfaces with one-dimensional singular sets, Math. Ann., Volume 282 (1988), pp. 33-49
[11] On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan, Volume 31 (1979), pp. 435-450
[12] Non-Degenerate Complete Intersection Singularity, Actualités Mathématiques, Hermann, Paris, 1997
[13] Topologically trivial deformations of isolated quasihomogeneous hypersurface singularities are equimultiple, Proc. Amer. Math. Soc., Volume 101 (1987), pp. 260-262
[14] Bilipschitz invariance of the multiplicity, Bull. London Math. Soc., Volume 29 (1997), pp. 200-204
[15] Deformations with constant Milnor number and multiplicity of complex hypersurfaces, Glasg. Math. J., Volume 46 (2004), pp. 121-130
[16] Cycles évanescents, sections planes et conditions de Whitney, Astérisque, Volume 7/8 (1973), pp. 285-362 (Singularités à Cargèse)
[17] D. Trotman, Multiplicity is a invariant, Preprint, University Paris 11, Orsay, 1977
[18] Multiplicity as a invariant, Nagoya/Sapporo/Hachioji, 1996 (Pitman Res. Notes Math.), Volume vol. 381, Longman, Harlow (1998), pp. 215-221 (based on the Orsay Preprint [17])
[19] D. Trotman, Partial results on the topological invariance of the multiplicity of a complex hypersurface, Séminaire A'Campo–MacPherson, University Paris 7, 1977
[20] D. Trotman, Equisingularité et conditions de Whitney, Thèse d'état, Orsay, 1980
[21] Open questions in the theory of singularities, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 481-491
[22] On the topology of algebroid singularities, Amer. J. Math., Volume 54 (1932), pp. 453-465
Cité par Sources :
Commentaires - Politique