[Un algorithme de projection pour des problèmes d'interaction fluide–structure avec fort effet de masse ajoutée]
This Note aims at introducing a semi-implicit coupling scheme for fluid–structure interaction problems with a strong added-mass effect. Our main idea relies on the splitting of added-mass, viscous effects and geometrical/convective non-linearities, through a Chorin–Temam projection scheme within the fluid. We state some theoretical stability results, in the linear case, and provide some numerical experiments. The main interest of the proposed scheme is its efficiency compared to the implicit approach.
Dans cette Note nous introduisons un schéma semi-implicite pour des problèmes d'interaction fluide–structure avec un fort effet de masse-ajoutée. La méthode est basée sur un certain découplage de la masse ajoutée, des effets visqueux et des non linéarités géometriques et convectives. Ce découplage peut être obtenu par une méthode de projection type Chorin–Temam. Nous énonçons un résultat de stabilité dans un cadre linéaire, et nous présentons quelques simulations numériques. Le principal intérêt de l'algorithme proposé est son efficacité par rapport aux approches implicites.
Accepté le :
Publié le :
Miguel A. Fernández 1 ; Jean-Frédéric Gerbeau 1 ; Céline Grandmont 1
@article{CRMATH_2006__342_4_279_0, author = {Miguel A. Fern\'andez and Jean-Fr\'ed\'eric Gerbeau and C\'eline Grandmont}, title = {A projection algorithm for fluid{\textendash}structure interaction problems with strong added-mass effect}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--284}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2005.12.017}, language = {en}, }
TY - JOUR AU - Miguel A. Fernández AU - Jean-Frédéric Gerbeau AU - Céline Grandmont TI - A projection algorithm for fluid–structure interaction problems with strong added-mass effect JO - Comptes Rendus. Mathématique PY - 2006 SP - 279 EP - 284 VL - 342 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2005.12.017 LA - en ID - CRMATH_2006__342_4_279_0 ER -
%0 Journal Article %A Miguel A. Fernández %A Jean-Frédéric Gerbeau %A Céline Grandmont %T A projection algorithm for fluid–structure interaction problems with strong added-mass effect %J Comptes Rendus. Mathématique %D 2006 %P 279-284 %V 342 %N 4 %I Elsevier %R 10.1016/j.crma.2005.12.017 %G en %F CRMATH_2006__342_4_279_0
Miguel A. Fernández; Jean-Frédéric Gerbeau; Céline Grandmont. A projection algorithm for fluid–structure interaction problems with strong added-mass effect. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 279-284. doi : 10.1016/j.crma.2005.12.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.017/
[1] Added-mass effect in the design of partitioned algorithms for fluid–structure problems, Comput. Methods Appl. Mech. Engrg., Volume 194 (2005) no. 42–44, pp. 4506-4527
[2] S. Deparis, M. Discacciati, G. Fourestey, A. Quarteroni, Heterogeneous domain decomposition methods for fluid–structure interaction problems, Technical report, EPFL-IACS report 08.2005, 2005
[3] C. Farhat, K. van der Zee, Ph. Geuzaine, Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear aeroelasticity, Comput. Methods Appl. Mech. Engrg., in press
[4] M.A. Fernández, J.-F. Gerbeau, C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, Technical Report 5700, INRIA, 2005, Int. J. Numer. Methods Engrg., submitted for publication
[5] A Newton method using exact Jacobians for solving fluid–structure coupling, Comput. & Structures, Volume 83 (2005), pp. 127-142
[6] A quasi-Newton algorithm based on a reduced model for fluid–structure interactions problems in blood flows, Math. Model. Numer. Anal., Volume 37 (2003) no. 4, pp. 631-648
[7] Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 8, pp. 1349-1377
[8] J.-L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., submitted for publication
[9] Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., Volume 190 (2001), pp. 3039-3067
[10] Partitioned strong coupling algorithms for fluid–structure interaction, Comput. & Structures, Volume 81 (2003), pp. 805-812
[11] D.P. Mok, W.A. Wall, E. Ramm, Partitioned analysis approach for the transient, coupled response of viscous fluids and flexible structures, in: W. Wunderlich (Ed.), Proceedings of the European Conference on Computational Mechanics, ECCM'99, TU Munich, 1999
[12] F. Nobile, Numerical approximation of fluid–structure interaction problems with application to haemodynamics, PhD thesis, EPFL, Switzerland, 2001
- Overcoming the added mass effect in FSI calculations relating to dynamic squat, Ocean Engineering, Volume 267 (2023), p. 113280 | DOI:10.1016/j.oceaneng.2022.113280
- Annex, Level Set Methods for Fluid-Structure Interaction, Volume 210 (2022), p. 161 | DOI:10.1007/978-3-031-08659-5_7
- Immersed Bodies in a Fluid: The Case of Elastic Bodies, Level Set Methods for Fluid-Structure Interaction, Volume 210 (2022), p. 99 | DOI:10.1007/978-3-031-08659-5_4
- An immersed boundary method for the fluid-structure interaction of slender flexible structures in viscous fluid, Journal of Computational Physics, Volume 423 (2020), p. 109801 | DOI:10.1016/j.jcp.2020.109801
- An efficient interface capturing method for a large collection of interacting bodies immersed in a fluid, Journal of Computational Physics, Volume 378 (2019), p. 143 | DOI:10.1016/j.jcp.2018.11.006
- Robin‐Neumann transmission conditions for fluid‐structure coupling: Embedded boundary implementation and parameter analysis, International Journal for Numerical Methods in Engineering, Volume 115 (2018) no. 5, p. 578 | DOI:10.1002/nme.5817
- A 3D common-refinement method for non-matching meshes in partitioned variational fluid–structure analysis, Journal of Computational Physics, Volume 374 (2018), p. 163 | DOI:10.1016/j.jcp.2018.05.023
- A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid–Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures, Journal of Scientific Computing, Volume 76 (2018) no. 1, p. 481 | DOI:10.1007/s10915-017-0629-y
- , 23rd AIAA Computational Fluid Dynamics Conference (2017) | DOI:10.2514/6.2017-3447
- Bibliography, Fluid‐Structure Interactions and Uncertainties (2017), p. 253 | DOI:10.1002/9781119388937.biblio
- A non-iterative immersed boundary method for spherical particles of arbitrary density ratio, Journal of Computational Physics, Volume 339 (2017), p. 432 | DOI:10.1016/j.jcp.2017.03.026
- A Nonlinear Fluid-Structure Interaction Problem in Compliant Arteries Treated with Vascular Stents, Applied Mathematics Optimization, Volume 73 (2016) no. 3, p. 433 | DOI:10.1007/s00245-016-9343-7
- An Operator Splitting Approach to the Solution of Fluid-Structure Interaction Problems in Hemodynamics, Splitting Methods in Communication, Imaging, Science, and Engineering (2016), p. 731 | DOI:10.1007/978-3-319-41589-5_22
- Semi-Implicit Coupling of CS-FEM and FEM for the Interaction Between a Geometrically Nonlinear Solid and an Incompressible Fluid, International Journal of Computational Methods, Volume 12 (2015) no. 05, p. 1550025 | DOI:10.1142/s0219876215500255
- A partitioned scheme for fluid–composite structure interaction problems, Journal of Computational Physics, Volume 281 (2015), p. 493 | DOI:10.1016/j.jcp.2014.10.045
- An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure, Numerical Methods for Partial Differential Equations, Volume 31 (2015) no. 4, p. 1054 | DOI:10.1002/num.21936
- Some Numerical Approaches to Solve Fluid Structure Interaction Problems in Blood Flow, Abstract and Applied Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/549189
- Mathematical and Numerical Analysis of Some FSI Problems, Fluid-Structure Interaction and Biomedical Applications (2014), p. 1 | DOI:10.1007/978-3-0348-0822-4_1
- Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation, Fluid-Structure Interaction and Biomedical Applications (2014), p. 79 | DOI:10.1007/978-3-0348-0822-4_2
- A modular, operator‐splitting scheme for fluid–structure interaction problems with thick structures, International Journal for Numerical Methods in Fluids, Volume 74 (2014) no. 8, p. 577 | DOI:10.1002/fld.3863
- Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model, Journal of Biomechanics, Volume 47 (2014) no. 5, p. 1027 | DOI:10.1016/j.jbiomech.2013.12.029
- , Proceedings of 10th World Congress on Computational Mechanics (2014), p. 4017 | DOI:10.5151/meceng-wccm2012-19670
- Immersed boundary methods for simulating fluid–structure interaction, Progress in Aerospace Sciences, Volume 65 (2014), p. 1 | DOI:10.1016/j.paerosci.2013.09.003
- State observers of a vascular fluid–structure interaction model through measurements in the solid, Computer Methods in Applied Mechanics and Engineering, Volume 256 (2013), p. 149 | DOI:10.1016/j.cma.2012.12.010
- A partitioned coupling scheme extended to structures interacting with high-density fluid flows, Computers Fluids, Volume 84 (2013), p. 190 | DOI:10.1016/j.compfluid.2013.05.022
- Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement, Journal of Computational Physics, Volume 235 (2013), p. 515 | DOI:10.1016/j.jcp.2012.08.033
- Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numerische Mathematik, Volume 123 (2013) no. 1, p. 21 | DOI:10.1007/s00211-012-0481-9
- Fractional-Step Schemes for the Coupling of Distributed and Lumped Models in Hemodynamics, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 3, p. B551 | DOI:10.1137/120874412
- External tissue support and fluid–structure simulation in blood flows, Biomechanics and Modeling in Mechanobiology, Volume 11 (2012) no. 1-2, p. 1 | DOI:10.1007/s10237-011-0289-z
- Sequential parameter estimation for fluid–structure problems: Application to hemodynamics, International Journal for Numerical Methods in Biomedical Engineering, Volume 28 (2012) no. 4, p. 434 | DOI:10.1002/cnm.1476
- Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit, SeMA Journal, Volume 55 (2011) no. 1, p. 59 | DOI:10.1007/bf03322593
- Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics, SIAM Journal on Scientific Computing, Volume 31 (2010) no. 6, p. 4041 | DOI:10.1137/090749694
- A partitioned fluid–structure algorithm for elastic thin valves with contact, Computer Methods in Applied Mechanics and Engineering, Volume 197 (2008) no. 19-20, p. 1750 | DOI:10.1016/j.cma.2007.03.019
- An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions, SIAM Journal on Scientific Computing, Volume 30 (2008) no. 2, p. 731 | DOI:10.1137/060678439
- Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction, SIAM Journal on Scientific Computing, Volume 30 (2008) no. 4, p. 1778 | DOI:10.1137/070680497
- A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 06, p. 957 | DOI:10.1142/s0218202507002170
Cité par 36 documents. Sources : Crossref
⁎ This work has been carried out during a one-year délégation of C. Grandmont at INRIA, and partially supported by the European Community through the Research Training Network “Mathematical Modelling of the Cardiovascular System (HaeMOdel)”, contract HPRN-CT-2002-00270.
Commentaires - Politique