Comptes Rendus
Numerical Analysis
A projection algorithm for fluid–structure interaction problems with strong added-mass effect
[Un algorithme de projection pour des problèmes d'interaction fluide–structure avec fort effet de masse ajoutée]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 279-284.

This Note aims at introducing a semi-implicit coupling scheme for fluid–structure interaction problems with a strong added-mass effect. Our main idea relies on the splitting of added-mass, viscous effects and geometrical/convective non-linearities, through a Chorin–Temam projection scheme within the fluid. We state some theoretical stability results, in the linear case, and provide some numerical experiments. The main interest of the proposed scheme is its efficiency compared to the implicit approach.

Dans cette Note nous introduisons un schéma semi-implicite pour des problèmes d'interaction fluide–structure avec un fort effet de masse-ajoutée. La méthode est basée sur un certain découplage de la masse ajoutée, des effets visqueux et des non linéarités géometriques et convectives. Ce découplage peut être obtenu par une méthode de projection type Chorin–Temam. Nous énonçons un résultat de stabilité dans un cadre linéaire, et nous présentons quelques simulations numériques. Le principal intérêt de l'algorithme proposé est son efficacité par rapport aux approches implicites.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.12.017

Miguel A. Fernández 1 ; Jean-Frédéric Gerbeau 1 ; Céline Grandmont 1

1 INRIA, REO team, Rocquencourt, B.P. 105, 78153 Le Chesnay cedex, France
@article{CRMATH_2006__342_4_279_0,
     author = {Miguel A. Fern\'andez and Jean-Fr\'ed\'eric Gerbeau and C\'eline Grandmont},
     title = {A projection algorithm for fluid{\textendash}structure interaction problems with strong added-mass effect},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {279--284},
     publisher = {Elsevier},
     volume = {342},
     number = {4},
     year = {2006},
     doi = {10.1016/j.crma.2005.12.017},
     language = {en},
}
TY  - JOUR
AU  - Miguel A. Fernández
AU  - Jean-Frédéric Gerbeau
AU  - Céline Grandmont
TI  - A projection algorithm for fluid–structure interaction problems with strong added-mass effect
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 279
EP  - 284
VL  - 342
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2005.12.017
LA  - en
ID  - CRMATH_2006__342_4_279_0
ER  - 
%0 Journal Article
%A Miguel A. Fernández
%A Jean-Frédéric Gerbeau
%A Céline Grandmont
%T A projection algorithm for fluid–structure interaction problems with strong added-mass effect
%J Comptes Rendus. Mathématique
%D 2006
%P 279-284
%V 342
%N 4
%I Elsevier
%R 10.1016/j.crma.2005.12.017
%G en
%F CRMATH_2006__342_4_279_0
Miguel A. Fernández; Jean-Frédéric Gerbeau; Céline Grandmont. A projection algorithm for fluid–structure interaction problems with strong added-mass effect. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 279-284. doi : 10.1016/j.crma.2005.12.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.017/

[1] P. Causin; J.-F. Gerbeau; F. Nobile Added-mass effect in the design of partitioned algorithms for fluid–structure problems, Comput. Methods Appl. Mech. Engrg., Volume 194 (2005) no. 42–44, pp. 4506-4527

[2] S. Deparis, M. Discacciati, G. Fourestey, A. Quarteroni, Heterogeneous domain decomposition methods for fluid–structure interaction problems, Technical report, EPFL-IACS report 08.2005, 2005

[3] C. Farhat, K. van der Zee, Ph. Geuzaine, Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear aeroelasticity, Comput. Methods Appl. Mech. Engrg., in press

[4] M.A. Fernández, J.-F. Gerbeau, C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, Technical Report 5700, INRIA, 2005, Int. J. Numer. Methods Engrg., submitted for publication

[5] M.A. Fernández; M. Moubachir A Newton method using exact Jacobians for solving fluid–structure coupling, Comput. & Structures, Volume 83 (2005), pp. 127-142

[6] J.-F. Gerbeau; M. Vidrascu A quasi-Newton algorithm based on a reduced model for fluid–structure interactions problems in blood flows, Math. Model. Numer. Anal., Volume 37 (2003) no. 4, pp. 631-648

[7] C. Grandmont; V. Guimet; Y. Maday Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 8, pp. 1349-1377

[8] J.-L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., submitted for publication

[9] P. Le Tallec; J. Mouro Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., Volume 190 (2001), pp. 3039-3067

[10] H.G. Matthies; J. Steindorf Partitioned strong coupling algorithms for fluid–structure interaction, Comput. & Structures, Volume 81 (2003), pp. 805-812

[11] D.P. Mok, W.A. Wall, E. Ramm, Partitioned analysis approach for the transient, coupled response of viscous fluids and flexible structures, in: W. Wunderlich (Ed.), Proceedings of the European Conference on Computational Mechanics, ECCM'99, TU Munich, 1999

[12] F. Nobile, Numerical approximation of fluid–structure interaction problems with application to haemodynamics, PhD thesis, EPFL, Switzerland, 2001

  • Emmanuel Lefrançois; Bo Yang; Sami Kaidi; Nisrine Mohamad Overcoming the added mass effect in FSI calculations relating to dynamic squat, Ocean Engineering, Volume 267 (2023), p. 113280 | DOI:10.1016/j.oceaneng.2022.113280
  • Georges-Henri Cottet; Emmanuel Maitre; Thomas Milcent Annex, Level Set Methods for Fluid-Structure Interaction, Volume 210 (2022), p. 161 | DOI:10.1007/978-3-031-08659-5_7
  • Georges-Henri Cottet; Emmanuel Maitre; Thomas Milcent Immersed Bodies in a Fluid: The Case of Elastic Bodies, Level Set Methods for Fluid-Structure Interaction, Volume 210 (2022), p. 99 | DOI:10.1007/978-3-031-08659-5_4
  • Silvio Tschisgale; Jochen Fröhlich An immersed boundary method for the fluid-structure interaction of slender flexible structures in viscous fluid, Journal of Computational Physics, Volume 423 (2020), p. 109801 | DOI:10.1016/j.jcp.2020.109801
  • M. Jedouaa; C.-H. Bruneau; E. Maitre An efficient interface capturing method for a large collection of interacting bodies immersed in a fluid, Journal of Computational Physics, Volume 378 (2019), p. 143 | DOI:10.1016/j.jcp.2018.11.006
  • Shunxiang Cao; Alex Main; Kevin G. Wang Robin‐Neumann transmission conditions for fluid‐structure coupling: Embedded boundary implementation and parameter analysis, International Journal for Numerical Methods in Engineering, Volume 115 (2018) no. 5, p. 578 | DOI:10.1002/nme.5817
  • Yulong Li; Yun Zhi Law; Vaibhav Joshi; Rajeev K. Jaiman A 3D common-refinement method for non-matching meshes in partitioned variational fluid–structure analysis, Journal of Computational Physics, Volume 374 (2018), p. 163 | DOI:10.1016/j.jcp.2018.05.023
  • Yifan Wang; Annalisa Quaini; Sunčica Čanić A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid–Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures, Journal of Scientific Computing, Volume 76 (2018) no. 1, p. 481 | DOI:10.1007/s10915-017-0629-y
  • Shunxiang Cao; Alex Main; Kevin G. Wang, 23rd AIAA Computational Fluid Dynamics Conference (2017) | DOI:10.2514/6.2017-3447
  • Bibliography, Fluid‐Structure Interactions and Uncertainties (2017), p. 253 | DOI:10.1002/9781119388937.biblio
  • Silvio Tschisgale; Tobias Kempe; Jochen Fröhlich A non-iterative immersed boundary method for spherical particles of arbitrary density ratio, Journal of Computational Physics, Volume 339 (2017), p. 432 | DOI:10.1016/j.jcp.2017.03.026
  • Martina Bukač; Sunčica Čanić; Boris Muha A Nonlinear Fluid-Structure Interaction Problem in Compliant Arteries Treated with Vascular Stents, Applied Mathematics Optimization, Volume 73 (2016) no. 3, p. 433 | DOI:10.1007/s00245-016-9343-7
  • Martina Bukač; Sunčica Čanić; Boris Muha; Roland Glowinski An Operator Splitting Approach to the Solution of Fluid-Structure Interaction Problems in Hemodynamics, Splitting Methods in Communication, Imaging, Science, and Engineering (2016), p. 731 | DOI:10.1007/978-3-319-41589-5_22
  • Tao He Semi-Implicit Coupling of CS-FEM and FEM for the Interaction Between a Geometrically Nonlinear Solid and an Incompressible Fluid, International Journal of Computational Methods, Volume 12 (2015) no. 05, p. 1550025 | DOI:10.1142/s0219876215500255
  • M. Bukač; S. Čanić; B. Muha A partitioned scheme for fluid–composite structure interaction problems, Journal of Computational Physics, Volume 281 (2015), p. 493 | DOI:10.1016/j.jcp.2014.10.045
  • Martina Bukač; Ivan Yotov; Paolo Zunino An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure, Numerical Methods for Partial Differential Equations, Volume 31 (2015) no. 4, p. 1054 | DOI:10.1002/num.21936
  • Aik Ying Tang; Norsarahaida Amin Some Numerical Approaches to Solve Fluid Structure Interaction Problems in Blood Flow, Abstract and Applied Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/549189
  • Céline Grandmont; Mária Lukáčová-Medvid’ová; Šárka Nečasová Mathematical and Numerical Analysis of Some FSI Problems, Fluid-Structure Interaction and Biomedical Applications (2014), p. 1 | DOI:10.1007/978-3-0348-0822-4_1
  • Sunčica Čanić; Boris Muha; Martina Bukač Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation, Fluid-Structure Interaction and Biomedical Applications (2014), p. 79 | DOI:10.1007/978-3-0348-0822-4_2
  • M. Bukač; S. Čanić; R. Glowinski; B. Muha; A. Quaini A modular, operator‐splitting scheme for fluid–structure interaction problems with thick structures, International Journal for Numerical Methods in Fluids, Volume 74 (2014) no. 8, p. 577 | DOI:10.1002/fld.3863
  • Cristóbal Bertoglio; David Barber; Nicholas Gaddum; Israel Valverde; Marcel Rutten; Philipp Beerbaum; Philippe Moireau; Rodney Hose; Jean-Frédéric Gerbeau Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model, Journal of Biomechanics, Volume 47 (2014) no. 5, p. 1027 | DOI:10.1016/j.jbiomech.2013.12.029
  • N. Al Sayed; E. Longatte, Proceedings of 10th World Congress on Computational Mechanics (2014), p. 4017 | DOI:10.5151/meceng-wccm2012-19670
  • Fotis Sotiropoulos; Xiaolei Yang Immersed boundary methods for simulating fluid–structure interaction, Progress in Aerospace Sciences, Volume 65 (2014), p. 1 | DOI:10.1016/j.paerosci.2013.09.003
  • C. Bertoglio; D. Chapelle; M.A. Fernández; J.-F. Gerbeau; P. Moireau State observers of a vascular fluid–structure interaction model through measurements in the solid, Computer Methods in Applied Mechanics and Engineering, Volume 256 (2013), p. 149 | DOI:10.1016/j.cma.2012.12.010
  • M.D. Song; E. Lefrançois; M. Rachik A partitioned coupling scheme extended to structures interacting with high-density fluid flows, Computers Fluids, Volume 84 (2013), p. 190 | DOI:10.1016/j.compfluid.2013.05.022
  • Martina Bukač; Sunčica Čanić; Roland Glowinski; Josip Tambača; Annalisa Quaini Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement, Journal of Computational Physics, Volume 235 (2013), p. 515 | DOI:10.1016/j.jcp.2012.08.033
  • Miguel A. Fernández Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numerische Mathematik, Volume 123 (2013) no. 1, p. 21 | DOI:10.1007/s00211-012-0481-9
  • Cristóbal Bertoglio; Alfonso Caiazzo; Miguel A. Fernández Fractional-Step Schemes for the Coupling of Distributed and Lumped Models in Hemodynamics, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 3, p. B551 | DOI:10.1137/120874412
  • P. Moireau; N. Xiao; M. Astorino; C. A. Figueroa; D. Chapelle; C. A. Taylor; J.-F. Gerbeau External tissue support and fluid–structure simulation in blood flows, Biomechanics and Modeling in Mechanobiology, Volume 11 (2012) no. 1-2, p. 1 | DOI:10.1007/s10237-011-0289-z
  • Cristóbal Bertoglio; Philippe Moireau; Jean‐Frederic Gerbeau Sequential parameter estimation for fluid–structure problems: Application to hemodynamics, International Journal for Numerical Methods in Biomedical Engineering, Volume 28 (2012) no. 4, p. 434 | DOI:10.1002/cnm.1476
  • Miguel A. Fernández Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit, SeMA Journal, Volume 55 (2011) no. 1, p. 59 | DOI:10.1007/bf03322593
  • Matteo Astorino; Franz Chouly; Miguel A. Fernández Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics, SIAM Journal on Scientific Computing, Volume 31 (2010) no. 6, p. 4041 | DOI:10.1137/090749694
  • N. Diniz dos Santos; J.-F. Gerbeau; J.-F. Bourgat A partitioned fluid–structure algorithm for elastic thin valves with contact, Computer Methods in Applied Mechanics and Engineering, Volume 197 (2008) no. 19-20, p. 1750 | DOI:10.1016/j.cma.2007.03.019
  • F. Nobile; C. Vergara An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions, SIAM Journal on Scientific Computing, Volume 30 (2008) no. 2, p. 731 | DOI:10.1137/060678439
  • Santiago Badia; Annalisa Quaini; Alfio Quarteroni Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction, SIAM Journal on Scientific Computing, Volume 30 (2008) no. 4, p. 1778 | DOI:10.1137/070680497
  • A. QUAINI; A. QUARTERONI A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 06, p. 957 | DOI:10.1142/s0218202507002170

Cité par 36 documents. Sources : Crossref

This work has been carried out during a one-year délégation of C. Grandmont at INRIA, and partially supported by the European Community through the Research Training Network “Mathematical Modelling of the Cardiovascular System (HaeMOdel)”, contract HPRN-CT-2002-00270.

Commentaires - Politique