The ‘nonpositive curvature retraction theorem’ has a refined version, a version that respects characteristic classes.
Nous précisons que le « théorème de rétraction en courbure non-positif » à une version plus raffiné, une version qui respecte les classes caractéristiques.
Accepted:
Published online:
B.Z. Hu 1
@article{CRMATH_2006__342_4_253_0, author = {B.Z. Hu}, title = {Relative hyperbolization and {Pontrjagin} classes}, journal = {Comptes Rendus. Math\'ematique}, pages = {253--257}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2005.12.020}, language = {en}, }
B.Z. Hu. Relative hyperbolization and Pontrjagin classes. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 253-257. doi : 10.1016/j.crma.2005.12.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.020/
[1] Exotic aspherical manifolds, Topology of High-Dimensional Manifolds, ICTP Lecture Notes Ser., vol. 9, 2002
[2] Hyperbolization of polyhedra, J. Differential Geom., Volume 34 (1991) no. 2, pp. 347-388
[3] Hyperbolic groups, Essays in Group Theory, MSRI Publ, vol. 8, 1987
[4] Whitehead groups of finite polyhedra with nonpositive curvature, J. Differential Geom., Volume 38 (1993), pp. 501-517
[5] Retractions of closed manifolds with nonpositive curvature, Geometric Group Theory, de Gruyter, New York, 1995, pp. 135-147
[6] Topological rigidity for compact nonpositively curved manifolds, Proc. Sympos. Pure Math., Volume 54 (1993), pp. 229-274
[7] Block bundles I, Ann. of Math. (2), Volume 87 (1968), pp. 1-28
[8] Block bundles II, Ann. of Math. (2), Volume 87 (1968), pp. 256-278
[9] Strict hyperbolization, Topology, Volume 34 (1995) no. 2, pp. 329-350
[10] F.T. Farrell, B.Z. Hu, L.E. Jones, Topological rigidity of compact polyhedra with nonpositive curvature, in press
Cited by Sources:
Comments - Policy