We consider smooth maps on compact Riemannian manifolds. We prove that under some mild condition of eventual volume expansion Lebesgue almost everywhere we have uniform backward volume contraction on every pre-orbit of Lebesgue almost every point.
Nous considérons des transformations différentiables sur des varietés Riemannienes compactes. Nous montrons que dans une certaine condition modérée d'expansion de volume nous pouvons déduire que pour Lebesgue presque chaque point nous avons contraction uniforme de volume en arrière de chaque pré-orbite.
Accepted:
Published online:
José F. Alves 1; Armando Castro 2; Vilton Pinheiro 2
@article{CRMATH_2006__342_4_259_0, author = {Jos\'e F. Alves and Armando Castro and Vilton Pinheiro}, title = {Backward volume contraction for endomorphisms with eventual volume expansion}, journal = {Comptes Rendus. Math\'ematique}, pages = {259--262}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2005.11.024}, language = {en}, }
TY - JOUR AU - José F. Alves AU - Armando Castro AU - Vilton Pinheiro TI - Backward volume contraction for endomorphisms with eventual volume expansion JO - Comptes Rendus. Mathématique PY - 2006 SP - 259 EP - 262 VL - 342 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2005.11.024 LA - en ID - CRMATH_2006__342_4_259_0 ER -
José F. Alves; Armando Castro; Vilton Pinheiro. Backward volume contraction for endomorphisms with eventual volume expansion. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 259-262. doi : 10.1016/j.crma.2005.11.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.024/
[1] Random perturbations of nonuniformly expanding maps, Astérisque, Volume 286 (2003), pp. 25-62
[2] SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., Volume 140 (2000), pp. 351-398
[3] On iterations of on , Ann. Math., Volume 122 (1985), pp. 1-25
[4] Weakly expanding skew-products of quadratic maps, Ergodic Theory Dynam. Systems, Volume 23 (2003) no. 5, pp. 1401-1414
[5] J. Freitas, Continuity of SRB measure and entropy for Benedicks–Carleson quadratic maps, Preprint, CMUP, 2004
[6] Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys., Volume 81 (1981), pp. 39-88
[7] Multidimensional non-hyperbolic attractors, Publ. Math. IHES, Volume 85 (1997), pp. 63-96
Cited by Sources:
⁎ Work carried out at the Federal University of Bahia. Partially supported by FCT through CMUP and UFBA.
Comments - Policy