Comptes Rendus
Mathematical Problems in Mechanics
Beltrami's solutions of general equilibrium equations in continuum mechanics
[Solutions de Beltrami des équations d'équilibre de la mécanique des milieux continus]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 5, pp. 359-363.

M. Gurtin a montré que la représentation de Beltrami, S=rotrotA, d'un champ régulier de contraintes à divergence nulle dans un ouvert à bord régulier est vérifiée si et seulement si S est auto-équilibré. Les conditions données par Gurtin sont étendues au cas d'un ouvert à bord Lipschitzien pour un champ SL2(Ω;Msym3). Par application de ce résultat on trouve une extension des conditions de compatibilité de Saint Venant aux domaines non nécessairement simplement connexes.

M. Gurtin has proved that the Beltrami representation, S=rotrotA, of a smooth, divergence-free stress tensor in a smooth domain, is verified if and only if S is self-equilibrated. Here, Gurtin's conditions are extended to the case of a bounded domain with a Lipschitz-continuous boundary, for a tensor field SL2(Ω;Msym3). We apply this result to obtain an extension of the Saint Venant's equations of compatibility to non necessarily simply-connected domains.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.12.031

Giuseppe Geymonat 1 ; Françoise Krasucki 1

1 Laboratoire de Mécanique et de Génie Civil, UMR 5508, Université Montpellier II, place Eugène-Bataillon, 34695 Montpellier cedex 5, France
@article{CRMATH_2006__342_5_359_0,
     author = {Giuseppe Geymonat and Fran\c{c}oise Krasucki},
     title = {Beltrami's solutions of general equilibrium equations in continuum mechanics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {359--363},
     publisher = {Elsevier},
     volume = {342},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crma.2005.12.031},
     language = {en},
}
TY  - JOUR
AU  - Giuseppe Geymonat
AU  - Françoise Krasucki
TI  - Beltrami's solutions of general equilibrium equations in continuum mechanics
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 359
EP  - 363
VL  - 342
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2005.12.031
LA  - en
ID  - CRMATH_2006__342_5_359_0
ER  - 
%0 Journal Article
%A Giuseppe Geymonat
%A Françoise Krasucki
%T Beltrami's solutions of general equilibrium equations in continuum mechanics
%J Comptes Rendus. Mathématique
%D 2006
%P 359-363
%V 342
%N 5
%I Elsevier
%R 10.1016/j.crma.2005.12.031
%G en
%F CRMATH_2006__342_5_359_0
Giuseppe Geymonat; Françoise Krasucki. Beltrami's solutions of general equilibrium equations in continuum mechanics. Comptes Rendus. Mathématique, Volume 342 (2006) no. 5, pp. 359-363. doi : 10.1016/j.crma.2005.12.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.031/

[1] C. Amrouche; C. Bernardi; M. Dauge; V. Girault Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864

[2] Ph.G. Ciarlet; P. Ciarlet Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271

[3] Ph.G. Ciarlet, L. Gratie, S. Kesavan, On Saint Venant's compatibility conditions and Poincare's lemma, in press

[4] G. Geymonat; F. Krasucki On the existence of the Airy function in Lipschitz domains. Application to the traces of H2, C. R. Acad. Sci. Paris, Sér. I, Volume 330 (2000), pp. 355-360

[5] G. Geymonat, F. Krasucki, Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL Mem. Mat. Appl. (5), in press

[6] G. Geymonat; P. Suquet Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986), pp. 206-222

[7] V. Girault; P.A. Raviart Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986

[8] M. Gurtin The linear theory of elasticity (C. Truesdell, ed.), Handbuch der Physik, vol. VIa/2, Springer, Berlin, 1972

[9] J.-L. Lions; E. Magenes Problèmes aux Limites non Homogènes et Applications, vol. 1, Dunod, Paris, 1968

Cité par Sources :

Commentaires - Politique