[Caractérisation du noyau de l'opérateur CURL CURL]
Dans un domaine simplement connexe Ω de
In a simply-connected domain Ω in
Publié le :
Philippe G. Ciarlet 1 ; Patrick Ciarlet 2 ; Giuseppe Geymonat 3 ; Françoise Krasucki 3
@article{CRMATH_2007__344_5_305_0, author = {Philippe G. Ciarlet and Patrick Ciarlet and Giuseppe Geymonat and Fran\c{c}oise Krasucki}, title = {Characterization of the kernel of the operator {CURL\,CURL}}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--308}, publisher = {Elsevier}, volume = {344}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.01.001}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Patrick Ciarlet AU - Giuseppe Geymonat AU - Françoise Krasucki TI - Characterization of the kernel of the operator CURL CURL JO - Comptes Rendus. Mathématique PY - 2007 SP - 305 EP - 308 VL - 344 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.01.001 LA - en ID - CRMATH_2007__344_5_305_0 ER -
%0 Journal Article %A Philippe G. Ciarlet %A Patrick Ciarlet %A Giuseppe Geymonat %A Françoise Krasucki %T Characterization of the kernel of the operator CURL CURL %J Comptes Rendus. Mathématique %D 2007 %P 305-308 %V 344 %N 5 %I Elsevier %R 10.1016/j.crma.2007.01.001 %G en %F CRMATH_2007__344_5_305_0
Philippe G. Ciarlet; Patrick Ciarlet; Giuseppe Geymonat; Françoise Krasucki. Characterization of the kernel of the operator CURL CURL. Comptes Rendus. Mathématique, Volume 344 (2007) no. 5, pp. 305-308. doi : 10.1016/j.crma.2007.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.01.001/
[1] Sobolev Spaces, Academic Press, 2003
[2] Vector potentials in three-dimensional non-smooth domains, Math. Meth. Appl. Sci., Volume 21 (1998), pp. 823-864
[3] On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132
[4] Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155
[5] Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Meth. Appl. Sci., Volume 15 (2005), pp. 259-271
[6] Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, 1988
[7] Some remarks on the compatibility conditions in elasticity, Rend. Accad. Naz. Sci. XL, Volume 123 (2005), pp. 175-182
[8] Beltrami's solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 359-363
[9] Electromagnetic Theory and Computation: A Topological Approach, MSRI Publications Series, Cambridge University Press, Cambridge, 2004
[10] Sur l'équilibre des corps élastiques multiplement connexes, Annales Scientifiques de l'Ecole Normale Supérieure, 3ème Série, Volume 24 (1907), pp. 401-517
- Elliptic Pre-Complexes, Hodge-like Decompositions and Overdetermined Boundary-Value Problems, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2025.10
- BGG Sequences with Weak Regularity and Applications, Foundations of Computational Mathematics, Volume 24 (2024) no. 4, p. 1145 | DOI:10.1007/s10208-023-09608-9
- On a Steklov Spectrum in Electromagnetics, Adventures in Contemporary Electromagnetic Theory (2023), p. 195 | DOI:10.1007/978-3-031-24617-3_9
- The elasticity complex: compact embeddings and regular decompositions, Applicable Analysis, Volume 102 (2023) no. 16, p. 4393 | DOI:10.1080/00036811.2022.2117497
- Beltrami’s completeness for 𝕃p symmetric matrix fields, Mathematical Models and Methods in Applied Sciences, Volume 32 (2022) no. 06, p. 1251 | DOI:10.1142/s0218202522500282
- The index of some mixed order Dirac type operators and generalised Dirichlet–Neumann tensor fields, Mathematische Zeitschrift, Volume 301 (2022) no. 2, p. 1739 | DOI:10.1007/s00209-021-02947-9
- On Saint-Venant Compatibility and Stress Potentials in Manifolds with Boundary and Constant Sectional Curvature, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 4, p. 4625 | DOI:10.1137/21m1466736
- On the curl operator and some characterizations of matrix fields in Lipschitz domains, Journal of Mathematical Analysis and Applications, Volume 494 (2021) no. 1, p. 124595 | DOI:10.1016/j.jmaa.2020.124595
- Poincaré path integrals for elasticity, Journal de Mathématiques Pures et Appliquées, Volume 135 (2020), p. 83 | DOI:10.1016/j.matpur.2019.06.002
- Second Order Linear Differential Operators over High Rank Tensor Fields, Mechanics of Solids, Volume 55 (2020) no. 6, p. 808 | DOI:10.3103/s0025654420060060
- Direct computation of stresses in linear elasticity, Journal of Computational and Applied Mathematics, Volume 292 (2016), p. 363 | DOI:10.1016/j.cam.2015.07.005
- Generalized compatibility equations for tensors of high ranks in multidimensional continuum mechanics, Russian Journal of Mathematical Physics, Volume 23 (2016) no. 4, p. 475 | DOI:10.1134/s106192081604004x
- Compatibility equations in systems based on generalized Cauchy kinematic relations, Mechanics of Solids, Volume 49 (2014) no. 1, p. 99 | DOI:10.3103/s0025654414010117
- Cohomology in 3D Magneto-Quasistatics Modeling, Communications in Computational Physics, Volume 14 (2013) no. 1, p. 48 | DOI:10.4208/cicp.151111.180712a
- A NEW DUALITY APPROACH TO ELASTICITY, Mathematical Models and Methods in Applied Sciences, Volume 22 (2012) no. 01 | DOI:10.1142/s0218202512005861
- LAGRANGE MULTIPLIERS IN INTRINSIC ELASTICITY, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 04, p. 651 | DOI:10.1142/s0218202511005167
- WEAK VECTOR AND SCALAR POTENTIALS: APPLICATIONS TO POINCARÉ'S THEOREM AND KORN'S INEQUALITY IN SOBOLEV SPACES WITH NEGATIVE EXPONENTS, Analysis and Applications, Volume 08 (2010) no. 01, p. 1 | DOI:10.1142/s0219530510001497
- A Cesàro–Volterra formula with little regularity, Journal de Mathématiques Pures et Appliquées, Volume 93 (2010) no. 1, p. 41 | DOI:10.1016/j.matpur.2009.05.011
- DIRECT COMPUTATION OF STRESSES IN PLANAR LINEARIZED ELASTICITY, Mathematical Models and Methods in Applied Sciences, Volume 19 (2009) no. 07, p. 1043 | DOI:10.1142/s0218202509003711
- Korn's inequality and Donati's theorem for the conformal Killing operator on pseudo-Euclidean space, Journal of Mathematical Analysis and Applications, Volume 345 (2008) no. 2, p. 777 | DOI:10.1016/j.jmaa.2008.04.063
Cité par 20 documents. Sources : Crossref
Commentaires - Politique