The periodic unfolding method was introduced in 2002 by D. Cioranescu et al. for the study of classical periodic homogenization. In this Note, we extend this method to perforated domains introducing also a boundary unfolding operator. As an application, we study the homogenization of some elliptic problems with Robin condition on the boundary of the holes.
Dans cette Note nous adaptons la méthode d'éclatement périodique introduite par D. Cioranescu et al. en 2002 aux domaines perforés. Afin d'étudier des problèmes non homogènes, nous introduisons un opérateur d'éclatement frontière. Les résultats sont ensuite appliqués à l'homogénéisation de quelques problèmes elliptiques avec une condition du type Fourier sur le bord des trous.
Accepted:
Published online:
Doina Cioranescu 1; Patrizia Donato 1, 2; Rachad Zaki 1
@article{CRMATH_2006__342_7_469_0, author = {Doina Cioranescu and Patrizia Donato and Rachad Zaki}, title = {Periodic unfolding and {Robin} problems in perforated domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {469--474}, publisher = {Elsevier}, volume = {342}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.01.028}, language = {en}, }
TY - JOUR AU - Doina Cioranescu AU - Patrizia Donato AU - Rachad Zaki TI - Periodic unfolding and Robin problems in perforated domains JO - Comptes Rendus. Mathématique PY - 2006 SP - 469 EP - 474 VL - 342 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2006.01.028 LA - en ID - CRMATH_2006__342_7_469_0 ER -
Doina Cioranescu; Patrizia Donato; Rachad Zaki. Periodic unfolding and Robin problems in perforated domains. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 469-474. doi : 10.1016/j.crma.2006.01.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.028/
[1] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518
[2] Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978
[3] On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., Volume 52 (1975), pp. 189-219
[4] Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 99-104
[5] Homogénéisation du problème de Neumann non homogène dans des ouverts perforés, Asymptotic Anal., Volume 1 (1988), pp. 115-138
[6] Homogenization in open sets with holes, J. Math. Anal. Appl., Volume 71 (1979), pp. 590-607
[7] Homogenization of Reticulated Structures, Appl. Math. Sci., vol. 136, Springer-Verlag, New York, 1999
[8] Error estimate and unfolding for periodic homogenization, Asymptotic Anal., Volume 3–4 (2004), pp. 269-286
[9] The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math., Volume 73 (1991), pp. 117-125
Cited by Sources:
Comments - Policy