[Aspects asymptotiques des graphes de Schreier et groupes des Tours de Hanoï]
On montre quelques relations entre la croissance, la croissance des diamètres et la vitesse avec laquelle le trou spectral dans les graphes de Schreier des groupes automatiques tend vers zéro. En particulier, on introduit un certain nombre d'exemples, les groupes dits des Tours de Hanoï car ils donnent un modèle du célèbre problème des Tours de Hanoï, et qui illustrent des types possibles de comportement.
We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior.
Publié le :
Rostislav Grigorchuk 1 ; Zoran Šunik´ 1
@article{CRMATH_2006__342_8_545_0, author = {Rostislav Grigorchuk and Zoran \v{S}unik{\textasciiacute}}, title = {Asymptotic aspects of {Schreier} graphs and {Hanoi} {Towers} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {545--550}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.02.001}, language = {en}, }
Rostislav Grigorchuk; Zoran Šunik´. Asymptotic aspects of Schreier graphs and Hanoi Towers groups. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 545-550. doi : 10.1016/j.crma.2006.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.001/
[1] A free group of finite automata, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (4) (1983), pp. 12-14
[2] On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, Volume 231 (2000), pp. 5-45 (Din. Sist., Avtom. i Beskon. Gruppy)
[3] Branch groups, Handbook of Algebra, vol. 3, North-Holland, Amsterdam, 2003, pp. 989-1112
[4] Some solvable automaton groups, Topological and Asymptotic Aspects of Group Theory, Contemp. Math., vol. 394, Amer. Math. Soc., Providence, RI, 2006, pp. 11-30
[5] ω-periodic graphs, Electron. J. Combin., Volume 12 (2005) no. 1, p. R46 (electronic, 12 p)
[6] Results and open problems on the Tower of Hanoi, Congr. Numer., Volume 139 (1999), pp. 113-122
[7] I. Bondarenko, T. Ceccherini-Silberstein, V. Nekrashevych, Amenable graphs with dense holonomy and no cocompact isometry groups, preprint, 2006
[8] Boundary behavior for groups of subexponential growth, Ann. of Math. (2), Volume 160 (2004) no. 3, pp. 1183-1210
[9] Functional iterations and periodic oscillations for simple random walk on the Sierpiński graph, Stochastic Process. Appl., Volume 69 (1997) no. 1, pp. 127-138
[10] On Burnside's problem on periodic groups, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 1, pp. 53-54
[11] Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, Volume 231 (2000), pp. 134-214 (Din. Sist., Avtom. i Beskon. Gruppy)
[12] On the asymptotic spectrum of random walks on infinite families of graphs, Random Walks and Discrete Potential Theory, Sympos. Math., vol. XXXIX, Cambridge Univ. Press, Cambridge, 1999, pp. 188-204
[13] The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata, Volume 87 (2001) no. 1–3, pp. 209-244
[14] On the Frame–Stewart algorithm for the multi-peg Tower of Hanoi problem, Discrete Appl. Math., Volume 120 (2002) no. 1–3, pp. 141-157
[15] Self-Similar Groups, Math. Surveys Monogr., vol. 117, American Mathematical Society, Providence, RI, 2005
[16] In how many steps the k peg version of the Towers of Hanoi game can be solved?, STACS 99, Trier (Lecture Notes in Comput. Sci.), Volume vol. 1563, Springer, Berlin (1999), pp. 356-361
[17] Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal., Volume 159 (1998) no. 2, pp. 537-567
[18] On a free group of transformations defined by an automaton, 2006 | arXiv
- A branch group in a class of non-contracting weakly regular branch groups, International Journal of Algebra and Computation, Volume 34 (2024) no. 6, pp. 901-918 | DOI:10.1142/s021819672450036x | Zbl:7939704
- Portrait growth in contracting, regular branch groups, Journal of Algebra and its Applications, Volume 22 (2023) no. 8, p. 18 (Id/No 2350180) | DOI:10.1142/s0219498823501803 | Zbl:1520.20056
- Solenoidal maps, automatic sequences, van der Put series, and Mealy automata, Journal of the Australian Mathematical Society, Volume 114 (2023) no. 1, pp. 78-109 | DOI:10.1017/s1446788722000027 | Zbl:1521.68080
- Rubik Tables and object rearrangement, The International Journal of Robotics Research, Volume 42 (2023) no. 6, p. 459 | DOI:10.1177/02783649211059844
- A commutator lemma for confined subgroups and applications to groups acting on rooted trees, Transactions of the American Mathematical Society, Volume 376 (2023) no. 10, pp. 7187-7233 | DOI:10.1090/tran/8965 | Zbl:1526.20039
- Groups with ALOGTIME-hard word problems and PSPACE-complete compressed word problems, ACM Transactions on Computation Theory, Volume 14 (2022) no. 3-4, p. 41 (Id/No 11) | DOI:10.1145/3569708 | Zbl:7988316
- Monadic second-order logic and the domino problem on self-similar graphs, Groups, Geometry, and Dynamics, Volume 16 (2022) no. 4, pp. 1423-1459 | DOI:10.4171/ggd/689 | Zbl:7672034
- Book review of: F. Bassino et al., Complexity and randomness in group theory. GAGTA book 1, Jahresbericht der Deutschen Mathematiker-Vereinigung (DMV), Volume 124 (2022) no. 2, pp. 129-135 | DOI:10.1365/s13291-022-00248-6 | Zbl:1522.00015
- Graph automaton groups, Advances in Group Theory and Applications, Volume 11 (2021), pp. 75-112 | Zbl:1495.20038
- On rearrangement of items stored in stacks, Algorithmic foundations of robotics XIV. Proceedings of the fourteenth workshop on the algorithmic foundations of robotics, Cham: Springer, 2021, pp. 518-533 | DOI:10.1007/978-3-030-66723-8_31 | Zbl:1469.68137
- Integrable and Chaotic Systems Associated with Fractal Groups, Entropy, Volume 23 (2021) no. 2, p. 237 | DOI:10.3390/e23020237
- Groups with ALOGTIME-hard word problems and PSPACE-complete circuit value problems, 35th computational complexity conference, CCC 2020, July 28–31, 2020, Saarbrücken, Germany, virtual conference. Proceedings, Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik, 2020, p. 29 (Id/No 29) | DOI:10.4230/lipics.ccc.2020.29 | Zbl:7561757
- The congruence subgroup problem for a family of branch groups, International Journal of Algebra and Computation, Volume 30 (2020) no. 2, pp. 397-418 | DOI:10.1142/s0218196720500046 | Zbl:1452.20023
- Boundary dynamics for bireversible and for contracting automaton groups, International Journal of Algebra and Computation, Volume 30 (2020) no. 2, pp. 431-449 | DOI:10.1142/s021819672050006x | Zbl:1486.20031
- Endomorphisms of regular rooted trees induced by the action of polynomials on the ring
of -adic integers, Journal of Algebra and its Applications, Volume 19 (2020) no. 8, p. 20 (Id/No 2050154) | DOI:10.1142/s0219498820501546 | Zbl:1496.20047 - Spectral analysis and consensus problems for a class of fractal network models, Physica Scripta, Volume 95 (2020) no. 8, p. 085210 | DOI:10.1088/1402-4896/ab9e96
- Pro-
congruence properties for groups of rooted tree automorphisms, Archiv der Mathematik, Volume 112 (2019) no. 2, pp. 123-137 | DOI:10.1007/s00013-018-1278-6 | Zbl:1428.20029 - Key agreement based on automaton groups, Groups, Complexity, Cryptology, Volume 11 (2019) no. 2, pp. 77-81 | DOI:10.1515/gcc-2019-2012 | Zbl:1435.20043
- A constructive proof that the Hanoi towers group has non-trivial rigid kernel, Topology Proceedings, Volume 53 (2019), pp. 1-14 | Zbl:1479.20020
- Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order, Mathematische Annalen, Volume 370 (2018) no. 3-4, pp. 1607-1637 | DOI:10.1007/s00208-017-1573-8 | Zbl:1383.05196
- A survey and classification of Sierpiński-type graphs, Discrete Applied Mathematics, Volume 217 (2017), pp. 565-600 | DOI:10.1016/j.dam.2016.09.024 | Zbl:1358.05219
- Schreier Graphs of Grigorchuk's Group and a Subshift Associated to a Nonprimitive Substitution, Groups, Graphs and Random Walks (2017), p. 250 | DOI:10.1017/9781316576571.012
- Power dissipation in fractal AC circuits, Journal of Physics A: Mathematical and Theoretical, Volume 50 (2017) no. 32, p. 20 (Id/No 325205) | DOI:10.1088/1751-8121/aa7a66 | Zbl:1375.78030
- The Liouville property for groups acting on rooted trees, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 52 (2016) no. 4 | DOI:10.1214/15-aihp697
- From self-similar groups to self-similar sets and spectra, Fractal geometry and stochastics V. Selected papers of the 5th conference, Tabarz, Germany, March 24–29, 2014, Cham: Springer, 2015, pp. 175-207 | DOI:10.1007/978-3-319-18660-3_11 | Zbl:1359.37008
- Schreier graphs of actions of Thompson's group
on the unit interval and on the Cantor set, Geometriae Dedicata, Volume 175 (2015), pp. 355-372 | DOI:10.1007/s10711-014-9951-9 | Zbl:1309.05094 - Amenable groups without finitely presented amenable covers, Bulletin of Mathematical Sciences, Volume 3 (2013) no. 1, pp. 73-131 | DOI:10.1007/s13373-013-0031-5 | Zbl:1352.20025
- On a family of Schreier graphs of intermediate growth associated with a self-similar group, European Journal of Combinatorics, Volume 33 (2012) no. 7, pp. 1408-1421 | DOI:10.1016/j.ejc.2012.03.006 | Zbl:1245.05060
- Diameters, distortion, and eigenvalues, European Journal of Combinatorics, Volume 33 (2012) no. 7, pp. 1574-1587 | DOI:10.1016/j.ejc.2012.03.019 | Zbl:1246.05046
- Twin towers of Hanoi, European Journal of Combinatorics, Volume 33 (2012) no. 7, pp. 1691-1707 | DOI:10.1016/j.ejc.2012.03.026 | Zbl:1254.90287
- From self-similar structures to self-similar groups., International Journal of Algebra and Computation, Volume 22 (2012) no. 7, p. 16 (Id/No 1250056) | DOI:10.1142/s0218196712500567 | Zbl:1287.20037
- The congruence subgroup problem for branch groups., Israel Journal of Mathematics, Volume 187 (2012), pp. 419-450 | DOI:10.1007/s11856-011-0086-5 | Zbl:1271.20031
- Growth of Schreier graphs of automaton groups., Mathematische Annalen, Volume 354 (2012) no. 2, pp. 765-785 | DOI:10.1007/s00208-011-0757-x | Zbl:1280.20042
- Finite self-similar
-groups with Abelian first level stabilizers., International Journal of Algebra and Computation, Volume 21 (2011) no. 1-2, pp. 355-364 | DOI:10.1142/s0218196711006200 | Zbl:1233.20019 - Modified Hanoi towers groups and limit spaces., International Journal of Algebra and Computation, Volume 21 (2011) no. 6, pp. 867-887 | DOI:10.1142/s0218196711006443 | Zbl:1258.20021
- Coset enumeration for certain infinitely presented groups., International Journal of Algebra and Computation, Volume 21 (2011) no. 8, pp. 1369-1380 | DOI:10.1142/s0218196711006637 | Zbl:1235.20031
- Resistance scaling and the number of spanning trees in self-similar lattices, Journal of Statistical Physics, Volume 142 (2011) no. 4, pp. 879-897 | DOI:10.1007/s10955-011-0140-z | Zbl:1213.82024
- Some topics in the dynamics of group actions on rooted trees., Proceedings of the Steklov Institute of Mathematics, Volume 273 (2011), pp. 64-175 | DOI:10.1134/s0081543811040067 | Zbl:1268.20027
- Random walks on dual Sierpinski gaskets, The European Physical Journal B. Condensed Matter and Complex Systems, Volume 82 (2011) no. 1, pp. 91-96 | DOI:10.1140/epjb/e2011-20338-0 | Zbl:1515.82075
- Enumeration of matchings in families of self-similar graphs, Discrete Applied Mathematics, Volume 158 (2010) no. 14, pp. 1524-1535 | DOI:10.1016/j.dam.2010.05.006 | Zbl:1215.05087
- The Group of Symmetries of the Tower of Hanoi Graph, The American Mathematical Monthly, Volume 117 (2010) no. 4, p. 353 | DOI:10.4169/000298910x480829
- Harmonic analysis on the Pascal graph, Journal of Functional Analysis, Volume 256 (2009) no. 10, pp. 3409-3460 | DOI:10.1016/j.jfa.2009.01.011 | Zbl:1168.47039
- Vibration spectra of finitely ramifield, symmetric fractals, Fractals, Volume 16 (2008) no. 3, pp. 243-258 | DOI:10.1142/s0218348x08004010 | Zbl:1160.28302
- Homomorphic Images of Branch Groups, and Serre’s Property (FA), Geometry and Dynamics of Groups and Spaces, Volume 265 (2008), p. 353 | DOI:10.1007/978-3-7643-8608-5_7
- Vibration modes of 3n-gaskets and other fractals, Journal of Physics A: Mathematical and Theoretical, Volume 41 (2008) no. 1, p. 015101 | DOI:10.1088/1751-8113/41/1/015101
- Hausdorff dimension in a family of self-similar groups., Geometriae Dedicata, Volume 124 (2007), pp. 213-236 | DOI:10.1007/s10711-006-9106-8 | Zbl:1169.20015
Cité par 46 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier