We establish an efficient compatibility criterion for an overdetermined system of generalized complete intersection type in terms of multi-brackets.
Nous établissons un critère de compatibilité efficace pour un système détérminé de type intersection complète généralisée en termes de multi-crochets.
Accepted:
Published online:
Boris Kruglikov 1; Valentin Lychagin 1
@article{CRMATH_2006__342_8_557_0,
author = {Boris Kruglikov and Valentin Lychagin},
title = {Multi-brackets of differential operators and compatibility of {PDE} systems},
journal = {Comptes Rendus. Math\'ematique},
pages = {557--561},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {8},
doi = {10.1016/j.crma.2006.02.013},
language = {en},
}
Boris Kruglikov; Valentin Lychagin. Multi-brackets of differential operators and compatibility of PDE systems. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 557-561. doi: 10.1016/j.crma.2006.02.013
[1] Cohen–Macaulay Rings, Cambridge University Press, Cambridge, UK, 1993
[2] A generalized Koszul complex, II. Depth and multiplicity, Trans. Amer. Math. Soc., Volume 111 (1964), pp. 197-224
[3] Integrability criteria for systems of nonlinear partial differential equations, J. Differential Geom., Volume 1 (1967) no. 3, pp. 269-307
[4] An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc., Volume 70 (1964), pp. 16-47
[5] Geometry of Jet Spaces and Differential Equations, Gordon and Breach, 1986
[6] Mayer brackets and solvability of PDEs – I, Differential Geom. Appl., Volume 17 (2002), pp. 251-272
[7] Mayer brackets and solvability of PDEs – II, Trans. Amer. Math. Soc., Volume 358 (2006) no. 3, pp. 1077-1103 (article electronically published on April 22, 2005)
[8] A compatibility criterion for systems of PDEs and generalized Lagrange–Charpit method, Global Analysis and Applied Mathematics: International Workshop on Global Analysis, AIP Conf. Proc., vol. 729 (1), 2004, pp. 39-53
[9] S. Lie, F. Engel, Theorie der Transformationsgruppen, vol. II, Begründungstransformationen, Leipzig, Teubner, 1888–1893
[10] Equations de Lie. I & II, J. Differential Geometry, Volume 6 (1972), pp. 503-522 (in French)
[11] Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 179-239
Cited by Sources:
Comments - Policy
