We report the discovery of an infinite quantity of Mandelbrot-like sets in the real parameter space of the Hénon map, a bidimensional diffeomorphism not obeying the Cauchy–Riemann conditions and having no critical points. For practical applications, this result shows to be possible to stabilize infinitely many complex phases by tuning real parameters only.
Nous rapportons la découverte d'une quantité infinie d'ensembles de Mandelbrot dans l'espace des paramètres réels de la application d'Hénon, un difféomorphisme à deux dimension qui ne suit pas les conditions de Cauchy–Riemann et qui ne possède pas de points critiques. Pour des applications pratiques, nous montrons qu'il est possible de stabiliser une quantité infinie de phases complexes en ajustant seulement des paramètres réels.
Accepted:
Published online:
Antônio Endler 1; Jason A.C. Gallas 1
@article{CRMATH_2006__342_9_681_0, author = {Ant\^onio Endler and Jason A.C. Gallas}, title = {Mandelbrot-like sets in dynamical systems with no critical points}, journal = {Comptes Rendus. Math\'ematique}, pages = {681--684}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.02.027}, language = {en}, }
Antônio Endler; Jason A.C. Gallas. Mandelbrot-like sets in dynamical systems with no critical points. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 681-684. doi : 10.1016/j.crma.2006.02.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.027/
[1] Polynomial diffeomorphisms of . VII. Hyperbolicity and external rays, Ann. Sci. École Norm. Sup., Volume 32 (1999), pp. 455-497
[2] The dynamics of the Hénon map, Ann. Math., Volume 133 (1991), pp. 73-169
[3] Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser, Phys. Rev. Lett., Volume 95 (2005), p. 143905 (See also eprint) | arXiv
[4] Modèle topologique pour les applications de Hénon complexes, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 291-294
[5] A picture book of two families of cubic maps, Intern. J. Mod. Phys. C, Volume 4 (1993), pp. 553-568
[6] An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Redwood, 1989
[7] Arithmetical signatures of the Hénon map, Phys. Rev. E, Volume 65 (2002), p. 36231
[8] Existence of stable ghost orbits in the Hénon map, Physica A, Volume 344 (2004), pp. 491-497
[9] Reductions and simplifications of orbital sums in a Hamiltonian repeller, Phys. Lett. A, Volume 352 (2006), pp. 124-128
[10] A. Endler, J.A.C. Gallas, Conjugacy classes and orbital reversibility in a Hamiltonian repeller, Preprint, 2006
[11] Geography of the cubic connectedness locus: intertwining surgery, Ann. Sci. École Norm. Sup., Volume 32 (1999), pp. 151-185
[12] Structure of the parameter space of the Hénon map, Phys. Rev. Lett., Volume 70 (1993), pp. 2714-2717
[13] Lien entre les propriétés d'un endomorphisme de dimension un et celle d'un difféomorphisme de dimension deux, C. R. Acad. Sci. Paris, Ser. I, Volume 293 (1981), pp. 525-528
[14] Singularités dues au feuilletage du plan des bifurcations d'un difféomorphisme bi-dimensionnel, C. R. Acad. Sci. Paris, Ser. I, Volume 294 (1982), pp. 387-390
[15] Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, Oxford University Press, Oxford, 2000
[16] Bifurcations in 1D and 2D maps, Philos. Trans. Roy. Soc. London, Volume 311 (1984), pp. 43-102
[17] Hénon mappings in the complex domain I: the global topology of dynamical space, Pub. Math. IHÉS, Volume 79 (1994), pp. 5-46
[18] The Mandelbrot Set: Themes and Variations (T. Lei, ed.), London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge, 2000
[19] Crossroad-area to spring-area transition, parts I and II, Internat. J. Bifurc. Chaos, Volume 1 (1991), pp. 183-196 (339–348 and 643–655)
[20] On a normality condition for iterates of birational maps of , Ergodic Theory Dynam. Systems, Volume 25 (2005), pp. 913-920
[21] Dynamiques des applications rationnelles de , Dynamique et géométrie complexes, Lyon, 1997, Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. 97-185
[22] Discrete dynamical systems in dimensions one and two, Bull. London Math. Soc., Volume 15 (1983), pp. 177-217
Cited by Sources:
Comments - Policy