[L'inversibilité des perturbations d'identité adaptées sur l'espace de Wiener]
Soit l'espace de Wiener. Soit une perturbation d'identité adaptée, i.e., est adaptée à la filtration canonique de W. Nous donnons quelques conditions suffisantes qui impliquent l'inversibilité de l'application U.
Let be the classical Wiener space. Assume that is an adapted perturbation of identity, i.e., is adapted to the canonical filtration of W. We give some sufficient analytic conditions on u which imply the invertibility of the map U.
Accepté le :
Publié le :
A. Suleyman Üstünel 1 ; Moshe Zakai 2
@article{CRMATH_2006__342_9_689_0, author = {A. Suleyman \"Ust\"unel and Moshe Zakai}, title = {The invertibility of adapted perturbations of identity on the {Wiener} space}, journal = {Comptes Rendus. Math\'ematique}, pages = {689--692}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.02.031}, language = {en}, }
A. Suleyman Üstünel; Moshe Zakai. The invertibility of adapted perturbations of identity on the Wiener space. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 689-692. doi : 10.1016/j.crma.2006.02.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.031/
[1] Zur Theorie der linearen Integralgleichungen, Math. Z., Volume 9 (1921), pp. 196-217
[2] Linear Operators, vol. 2, Interscience, New York, 1967
[3] Capacités gaussiennes, Ann. Inst. Fourier, Volume 41 (1991) no. 1, pp. 49-76
[4] Stochastic Analysis, Springer, 1997
[5] Introduction to Analysis on Wiener Space, Lecture Notes in Math., vol. 1610, Springer, 1995
[6] Analysis on Wiener space and applications http://www.finance-research.net/ (Electronic text at the site)
[7] Transformation of Measure on Wiener Space, Springer-Verlag, 1999
Cité par Sources :
Commentaires - Politique