Let be the classical Wiener space. Assume that is an adapted perturbation of identity, i.e., is adapted to the canonical filtration of W. We give some sufficient analytic conditions on u which imply the invertibility of the map U.
Soit l'espace de Wiener. Soit une perturbation d'identité adaptée, i.e., est adaptée à la filtration canonique de W. Nous donnons quelques conditions suffisantes qui impliquent l'inversibilité de l'application U.
Accepted:
Published online:
A. Suleyman Üstünel 1; Moshe Zakai 2
@article{CRMATH_2006__342_9_689_0,
author = {A. Suleyman \"Ust\"unel and Moshe Zakai},
title = {The invertibility of adapted perturbations of identity on the {Wiener} space},
journal = {Comptes Rendus. Math\'ematique},
pages = {689--692},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {9},
doi = {10.1016/j.crma.2006.02.031},
language = {en},
}
A. Suleyman Üstünel; Moshe Zakai. The invertibility of adapted perturbations of identity on the Wiener space. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 689-692. doi: 10.1016/j.crma.2006.02.031
[1] Zur Theorie der linearen Integralgleichungen, Math. Z., Volume 9 (1921), pp. 196-217
[2] Linear Operators, vol. 2, Interscience, New York, 1967
[3] Capacités gaussiennes, Ann. Inst. Fourier, Volume 41 (1991) no. 1, pp. 49-76
[4] Stochastic Analysis, Springer, 1997
[5] Introduction to Analysis on Wiener Space, Lecture Notes in Math., vol. 1610, Springer, 1995
[6] Analysis on Wiener space and applications http://www.finance-research.net/ (Electronic text at the site)
[7] Transformation of Measure on Wiener Space, Springer-Verlag, 1999
Cited by Sources:
Comments - Policy
