En utilisant une méthode directe et constructive basée sur la théorie des solutions
By means of a direct and constructive method based on the theory of semi-global
Accepté le :
Publié le :
Tatsien Li 1
@article{CRMATH_2006__342_12_937_0, author = {Tatsien Li}, title = {Observabilit\'e exacte fronti\`ere pour des syst\`emes hyperboliques quasi-lin\'eaires}, journal = {Comptes Rendus. Math\'ematique}, pages = {937--942}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.02.036}, language = {fr}, }
Tatsien Li. Observabilité exacte frontière pour des systèmes hyperboliques quasi-linéaires. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 937-942. doi : 10.1016/j.crma.2006.02.036. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.036/
[1] C. R. Acad. Sci. Paris, Ser. I, 324 (1997), pp. 519-524
[2] SIAM J. Control Optim., 30 (1992), pp. 1024-1065
[3] J. Math. Anal. Appl., 235 (1999), pp. 13-57
[4] Chinese Ann. Math. Ser. B, 22 (2001), pp. 325-336
[5] C. R. Acad. Sci. Paris, Ser. I, 333 (2001), pp. 219-224
[6] Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, vol. I, Contrôlabilité Exacte, RMA, vol. 8, Masson, 1988
[7] Math. Methods Appl. Sci., 28 (2005), pp. 2037-2059
[8] Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chinese Ann. Math., in press
[9] SIAM J. Control Optim., 37 (1999), pp. 1568-1599
[10] C. R. Acad. Sci. Paris, Ser. I, 326 (1998), pp. 713-718
[11] J. Math. Pures Appl., 78 (1999), pp. 523-563
- Global exact boundary observability for first‐order quasilinear hyperbolic systems of diagonal form, Mathematical Methods in the Applied Sciences, Volume 35 (2012) no. 13, p. 1505 | DOI:10.1002/mma.2520
- Exact boundary observability for quasilinear wave equations in a planar tree-like network of strings, Journal de Mathématiques Pures et Appliquées, Volume 95 (2011) no. 1, p. 1 | DOI:10.1016/j.matpur.2010.06.001
- Exact boundary observability for a kind of second-order quasilinear hyperbolic system, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 4, p. 1073 | DOI:10.1016/j.na.2010.09.037
- Exact boundary observability of unsteady supercritical flows in a tree-like network of open canals, Chinese Annals of Mathematics, Series B, Volume 31 (2010) no. 4, p. 447 | DOI:10.1007/s11401-010-0595-2
- Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems, Chinese Annals of Mathematics, Series B, Volume 31 (2010) no. 5, p. 723 | DOI:10.1007/s11401-010-0600-9
- Exact boundary observability for a kind of second order quasilinear hyperbolic systems and its applications, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 12, p. 4452 | DOI:10.1016/j.na.2010.02.020
- Exact boundary observability for nonautonomous first‐order quasilinear hyperbolic systems, Mathematical Methods in the Applied Sciences, Volume 31 (2008) no. 16, p. 1956 | DOI:10.1002/mma.1013
Cité par 7 documents. Sources : Crossref
Commentaires - Politique