New examples of homogeneous operators involving infinitely many parameters are constructed. They are realized on Hilbert spaces of holomorphic functions with reproducing kernels which are computed explicitly. All the examples are irreducible and belong to the Cowen–Douglas class. Even though the construction is completely explicit, it is based on certain facts about Hermitian holomorphic homogeneous vector bundles. These facts also make possible a description of all homogeneous Cowen–Douglas operators, in a somewhat less explicit way.
Ou construit une nouvelle famille d'examples d'opérateurs homogènes dépendant d'une infinité de paramètres. Les exemples sont réalisés sur des espaces de fonctions holomorphes possédant des noyaux reproduisants qu'on calcule explicitement. Les exemples sont tous des opérateurs irréductibles appartenant à la classe de Cowen–Douglas. Tout en étant complètement explicite, la construction est fondée sur certaines propriétés des fibrés vectoriels hermitiens holomorphes homogènes. Ces propriétés permettent aussi une description, un peu moins explicite, de tous les opérateurs homogènes de la classe de Cowen–Douglas.
Accepted:
Published online:
Adam Korányi 1; Gadadhar Misra 2
@article{CRMATH_2006__342_12_933_0, author = {Adam Kor\'anyi and Gadadhar Misra}, title = {New constructions of homogeneous operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {933--936}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.002}, language = {en}, }
Adam Korányi; Gadadhar Misra. New constructions of homogeneous operators. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 933-936. doi : 10.1016/j.crma.2006.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.002/
[1] Homogeneous tuples of multiplication operators on twisted Bergman space, J. Funct. Anal., Volume 136 (1996), pp. 171-213
[2] Homogeneous operators and projective representations of the Möbius group: a survey, Proc. Ind. Acad. Sci. (Math. Sci.), Volume 111 (2001), pp. 415-437
[3] The homogeneous shifts, J. Funct. Anal., Volume 204 (2003), pp. 293-319
[4] Complex geometry and operator theory, Acta Math., Volume 141 (1978), pp. 187-261
[5] Generalized Bergman kernels and the Cowen–Douglas theory, Amer. J. Math., Volume 106 (1984), pp. 447-488
[6] Elements of the Theory of Representations, Grundlehren der Mathematischen Wissenschaften, Band 220, Springer-Verlag, Berlin, 1976
[7] Homogeneous vector bundles and Cowen–Douglas operators, Int. J. Math., Volume 4 (1993), pp. 503-520
Cited by Sources:
Comments - Policy