Soient
Let G be a complex reflection group acting on V, M be a finite dimensional G-module and S be the coordinate ring of V. Generalizing results of Orlik and Solomon, and of Shepler, we build an exterior algebra structure on the set of relative invariants (associated to a linear character of G) of the algebra
Accepté le :
Publié le :
Vincent Beck 1
@article{CRMATH_2006__342_10_727_0, author = {Vincent Beck}, title = {Invariants relatifs : une alg\`ebre ext\'erieure}, journal = {Comptes Rendus. Math\'ematique}, pages = {727--732}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.03.014}, language = {fr}, }
Vincent Beck. Invariants relatifs : une algèbre extérieure. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 727-732. doi : 10.1016/j.crma.2006.03.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.014/
[1] C. Bonnafé, G.I. Lehrer, J. Michel, Twisted invariant theory for reflection groups, Prépublications du laboratoire de mathématiques de Besançon
[2] Invariants of finite groups generated by reflections, Amer. J. Math., Volume 77 (1955), pp. 778-782
[3] Matrices connected with groups generated by mappings, Funct. Anal. Appl., Volume 7 (1973), pp. 153-154
[4] G.I. Lehrer, Remarks concerning linear characters of reflection groups, Preprint, 2004
[5] Invariant theory and eigenspaces for unitary reflection groups, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 795-800
[6] E. Opdam, Complex reflection groups and fake degrees, Preprint, 1998
[7] Unitary reflection groups and cohomology, Invent. Math., Volume 59 (1980), pp. 77-94
[8] Semi-invariants of finite reflection groups, J. Algebra, Volume 220 (1999), pp. 314-326
[9] Relative invariants of finite groups, J. Algebra, Volume 49 (1977), pp. 134-148
- Exterior algebra structure on relative invariants of reflection groups, Mathematische Zeitschrift, Volume 267 (2011) no. 1-2, pp. 261-289 | DOI:10.1007/s00209-009-0619-3 | Zbl:1215.13004
Cité par 1 document. Sources : zbMATH
Commentaires - Politique