Comptes Rendus
Harmonic Analysis
Universal sampling of band-limited signals
[Échantillonnage universel de signaux à spectre borné]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 927-931.

We ask if there exist universal sampling sets of given density, which provide reconstruction or stable reconstruction of every band-limited signal whose spectrum has a small Lebesgue measure. For the stable reconstruction, we show that it is crucial whether the spectrum is compact or dense. On the other hand, the non-stable universal reconstruction is possible in general situation.

Nous posons le problème de l'existence d'ensembles discrets, de densité donnée, permettant par échantillonnage la reconstitution, ou la reconstitution stable, de tout signal dont le spectre a une mesure de Lebesgue assez petite. Pour la reconstitution stable, nous montrons que la réponse dépend de manière cruciale du fait que le spectre soit compact ou soit dense. La reconstitution simple, par contre, est toujours possible.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.04.015

Alexander Olevskii 1 ; Alexander Ulanovskii 2

1 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
2 Stavanger University, NO-4036 Stavanger, Norway
@article{CRMATH_2006__342_12_927_0,
     author = {Alexander Olevskii and Alexander Ulanovskii},
     title = {Universal sampling of band-limited signals},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {927--931},
     publisher = {Elsevier},
     volume = {342},
     number = {12},
     year = {2006},
     doi = {10.1016/j.crma.2006.04.015},
     language = {en},
}
TY  - JOUR
AU  - Alexander Olevskii
AU  - Alexander Ulanovskii
TI  - Universal sampling of band-limited signals
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 927
EP  - 931
VL  - 342
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2006.04.015
LA  - en
ID  - CRMATH_2006__342_12_927_0
ER  - 
%0 Journal Article
%A Alexander Olevskii
%A Alexander Ulanovskii
%T Universal sampling of band-limited signals
%J Comptes Rendus. Mathématique
%D 2006
%P 927-931
%V 342
%N 12
%I Elsevier
%R 10.1016/j.crma.2006.04.015
%G en
%F CRMATH_2006__342_12_927_0
Alexander Olevskii; Alexander Ulanovskii. Universal sampling of band-limited signals. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 927-931. doi : 10.1016/j.crma.2006.04.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.015/

[1] A. Beurling Balayage of Fourier–Stietjes transforms, Collected Works of Arne Beurling, vol. 2, Harmonic Analysis, Birkhäuser, Boston, 1989

[2] A. Beurling; P. Malliavin On the closure of characters and the zeros of entire functions, Acta Math., Volume 118 (1967), pp. 79-93

[3] L. Bezuglaya; V. Katsnelson The sampling theorem for functions with limited multi-band spectrum, Z. Anal. Anwendungen, Volume 12 (1993) no. 3, pp. 511-534

[4] J. Bourgain; L. Tzafriri Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math., Volume 57 (1987) no. 2, pp. 137-224

[5] J.R. Higgins Sampling Theory in Fourier and Signal Analysis. Foundations, Clarendon Press, Oxford, 1996

[6] H.J. Landau A sparse regular sequence of exponentials closed on large sets, Bull. Amer. Math. Soc., Volume 70 (1964), pp. 566-569

[7] H.J. Landau Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., Volume 117 (1967), pp. 37-52

[8] Yu. Lyubarskii; I. Spitkovsky Sampling and interpolation for a lacunary spectrum, Proc. Roy. Soc. Edinburgh Sect. A, Volume 126 (1996) no. 1, pp. 77-87

[9] A. Olevskii; A. Ulanovskii Almost integer translates. Do nice generators exist?, J. Fourier Anal. Appl., Volume 10 (2004) no. 1, pp. 93-104

[10] K. Seip Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series, vol. 33, American Mathematical Society, Providence, RI, 2004

[11] E. Szemerédi On sets of integers containing no k elements in arithmetic progression, Acta Arith., Volume 27 (1975), pp. 199-245

  • Dae Gwan Lee On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum, Axioms, Volume 13 (2024) no. 1, p. 36 | DOI:10.3390/axioms13010036
  • Alexander Olevskii; Alexander Ulanovskii Reconstruction of Signals: Uniqueness and Stable Sampling, Sampling: Theory and Applications (2020), p. 9 | DOI:10.1007/978-3-030-36291-1_2
  • Albert Cohen A Journey Through the Mathematics of Yves Meyer, The Abel Prize 2013-2017 (2019), p. 645 | DOI:10.1007/978-3-319-99028-6_30
  • Basarab Matei Model Sets and New Versions of Shannon Sampling Theorem, New Trends in Applied Harmonic Analysis (2016), p. 215 | DOI:10.1007/978-3-319-27873-5_7
  • Basarab Matei; Younes Bennani, 2015 IEEE International Conference on Data Mining Workshop (ICDMW) (2015), p. 863 | DOI:10.1109/icdmw.2015.54
  • Yves Meyer Quasicrystals and Control Theory, Analysis and Geometry, Volume 127 (2015), p. 219 | DOI:10.1007/978-3-319-17443-3_12
  • Enrico Au-Yeung; Somantika Datta Tight frames, partial isometries, and signal reconstruction, Applicable Analysis, Volume 94 (2015) no. 4, p. 653 | DOI:10.1080/00036811.2014.909031
  • Alexander Olevskii; Alexander Ulanovskii On multi-dimensional sampling and interpolation, Analysis and Mathematical Physics, Volume 2 (2012) no. 2, p. 149 | DOI:10.1007/s13324-012-0027-4
  • Brad Osgood; Aditya Siripuram; William Wu Discrete Sampling and Interpolation: Universal Sampling Sets for Discrete Bandlimited Spaces, IEEE Transactions on Information Theory, Volume 58 (2012) no. 7, p. 4176 | DOI:10.1109/tit.2012.2193871
  • Gady Kozma; Nir Lev Exponential Riesz Bases, Discrepancy of Irrational Rotations and BMO, Journal of Fourier Analysis and Applications, Volume 17 (2011) no. 5, p. 879 | DOI:10.1007/s00041-011-9178-1
  • Basarab Matei; Yves Meyer Simple quasicrystals are sets of stable sampling, Complex Variables and Elliptic Equations, Volume 55 (2010) no. 8-10, p. 947 | DOI:10.1080/17476930903394689
  • Alexander Olevskii; Alexander Ulanovskii Interpolation in Bernstein and Paley–Wiener spaces, Journal of Functional Analysis, Volume 256 (2009) no. 10, p. 3257 | DOI:10.1016/j.jfa.2008.09.013

Cité par 12 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: