[Échantillonnage universel de signaux à spectre borné]
We ask if there exist universal sampling sets of given density, which provide reconstruction or stable reconstruction of every band-limited signal whose spectrum has a small Lebesgue measure. For the stable reconstruction, we show that it is crucial whether the spectrum is compact or dense. On the other hand, the non-stable universal reconstruction is possible in general situation.
Nous posons le problème de l'existence d'ensembles discrets, de densité donnée, permettant par échantillonnage la reconstitution, ou la reconstitution stable, de tout signal dont le spectre a une mesure de Lebesgue assez petite. Pour la reconstitution stable, nous montrons que la réponse dépend de manière cruciale du fait que le spectre soit compact ou soit dense. La reconstitution simple, par contre, est toujours possible.
Accepté le :
Publié le :
Alexander Olevskii 1 ; Alexander Ulanovskii 2
@article{CRMATH_2006__342_12_927_0, author = {Alexander Olevskii and Alexander Ulanovskii}, title = {Universal sampling of band-limited signals}, journal = {Comptes Rendus. Math\'ematique}, pages = {927--931}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.015}, language = {en}, }
Alexander Olevskii; Alexander Ulanovskii. Universal sampling of band-limited signals. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 927-931. doi : 10.1016/j.crma.2006.04.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.015/
[1] Balayage of Fourier–Stietjes transforms, Collected Works of Arne Beurling, vol. 2, Harmonic Analysis, Birkhäuser, Boston, 1989
[2] On the closure of characters and the zeros of entire functions, Acta Math., Volume 118 (1967), pp. 79-93
[3] The sampling theorem for functions with limited multi-band spectrum, Z. Anal. Anwendungen, Volume 12 (1993) no. 3, pp. 511-534
[4] Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math., Volume 57 (1987) no. 2, pp. 137-224
[5] Sampling Theory in Fourier and Signal Analysis. Foundations, Clarendon Press, Oxford, 1996
[6] A sparse regular sequence of exponentials closed on large sets, Bull. Amer. Math. Soc., Volume 70 (1964), pp. 566-569
[7] Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., Volume 117 (1967), pp. 37-52
[8] Sampling and interpolation for a lacunary spectrum, Proc. Roy. Soc. Edinburgh Sect. A, Volume 126 (1996) no. 1, pp. 77-87
[9] Almost integer translates. Do nice generators exist?, J. Fourier Anal. Appl., Volume 10 (2004) no. 1, pp. 93-104
[10] Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series, vol. 33, American Mathematical Society, Providence, RI, 2004
[11] On sets of integers containing no k elements in arithmetic progression, Acta Arith., Volume 27 (1975), pp. 199-245
- On Construction of Bounded Sets Not Admitting a General Type of Riesz Spectrum, Axioms, Volume 13 (2024) no. 1, p. 36 | DOI:10.3390/axioms13010036
- Reconstruction of Signals: Uniqueness and Stable Sampling, Sampling: Theory and Applications (2020), p. 9 | DOI:10.1007/978-3-030-36291-1_2
- A Journey Through the Mathematics of Yves Meyer, The Abel Prize 2013-2017 (2019), p. 645 | DOI:10.1007/978-3-319-99028-6_30
- Model Sets and New Versions of Shannon Sampling Theorem, New Trends in Applied Harmonic Analysis (2016), p. 215 | DOI:10.1007/978-3-319-27873-5_7
- , 2015 IEEE International Conference on Data Mining Workshop (ICDMW) (2015), p. 863 | DOI:10.1109/icdmw.2015.54
- Quasicrystals and Control Theory, Analysis and Geometry, Volume 127 (2015), p. 219 | DOI:10.1007/978-3-319-17443-3_12
- Tight frames, partial isometries, and signal reconstruction, Applicable Analysis, Volume 94 (2015) no. 4, p. 653 | DOI:10.1080/00036811.2014.909031
- On multi-dimensional sampling and interpolation, Analysis and Mathematical Physics, Volume 2 (2012) no. 2, p. 149 | DOI:10.1007/s13324-012-0027-4
- Discrete Sampling and Interpolation: Universal Sampling Sets for Discrete Bandlimited Spaces, IEEE Transactions on Information Theory, Volume 58 (2012) no. 7, p. 4176 | DOI:10.1109/tit.2012.2193871
- Exponential Riesz Bases, Discrepancy of Irrational Rotations and BMO, Journal of Fourier Analysis and Applications, Volume 17 (2011) no. 5, p. 879 | DOI:10.1007/s00041-011-9178-1
- Simple quasicrystals are sets of stable sampling, Complex Variables and Elliptic Equations, Volume 55 (2010) no. 8-10, p. 947 | DOI:10.1080/17476930903394689
- Interpolation in Bernstein and Paley–Wiener spaces, Journal of Functional Analysis, Volume 256 (2009) no. 10, p. 3257 | DOI:10.1016/j.jfa.2008.09.013
Cité par 12 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier