Comptes Rendus
Probability Theory/Optimal Control
Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations
Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 773-778.

In this Note, assuming that the generator is uniform Lipschitz in the unknown variables, we relate the solution of a one dimensional backward stochastic differential equation with the value process of a stochastic differential game. Under a domination condition, an F-consistent evaluation is also related to a stochastic differential game. This relation comes out of a min–max representation for uniform Lipschitz functions in terms of affine functions. The extension to reflected backward stochastic differential equations is also included.

Dans cette Note, supposant que le générateur soit une fonction uniformément lipschitzienne, nous présentons un lien entre les équations différentielles stochastiques rétrogrades et les jeux différentiels stochastiques. Sous une hypothèse de domination, une évaluation Ft-consistante est associée avec un jeu différentiel stochastique. Ce lien est une conséquence d'une représentation du min–max type pour les fonctions lipschitzienne en termes de fonctions affines. Une formule duale est aussi donnée pour les équations différentielles stochastiques rétrogrades refléchies.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.03.025

Shanjian Tang 1, 2

1 Department of Financial Mathematics and Control Sciences, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
2 Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education, China
@article{CRMATH_2006__342_10_773_0,
     author = {Shanjian Tang},
     title = {Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {773--778},
     publisher = {Elsevier},
     volume = {342},
     number = {10},
     year = {2006},
     doi = {10.1016/j.crma.2006.03.025},
     language = {en},
}
TY  - JOUR
AU  - Shanjian Tang
TI  - Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 773
EP  - 778
VL  - 342
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2006.03.025
LA  - en
ID  - CRMATH_2006__342_10_773_0
ER  - 
%0 Journal Article
%A Shanjian Tang
%T Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations
%J Comptes Rendus. Mathématique
%D 2006
%P 773-778
%V 342
%N 10
%I Elsevier
%R 10.1016/j.crma.2006.03.025
%G en
%F CRMATH_2006__342_10_773_0
Shanjian Tang. Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 773-778. doi : 10.1016/j.crma.2006.03.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.025/

[1] L.C. Evans Some min–max methods for the Hamilton–Jacobi equations, Indiana Univ. Math. J., Volume 33 (1984), pp. 31-50

[2] L.C. Evans; P.E. Souganidis Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations, Indiana Univ. Math. J., Volume 33 (1984), pp. 773-797

[3] N. El Karoui; C. Kapoudjian; E. Pardoux; S. Peng; M.C. Quenez Reflected solution of backward SDE's, and related obstacle problems for PDE's, Ann. Probab., Volume 25 (1997), pp. 702-737

[4] N. El Karoui; S. Peng; M.C. Quenez Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71

[5] W. Fleming The Cauchy problem for degenerate parabolic equations, J. Math. Mech., Volume 13 (1964), pp. 987-1008

[6] E. Pardoux; S. Peng Adapted solution of a backward stochastic differential equation, Systems Control Lett., Volume 14 (1990), pp. 55-61

[7] S. Peng Dynamical evaluation, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 585-589

Cited by Sources:

Comments - Policy