[Duale représentation comme les jeux différentielles stochastiques pour les équations différentielles stochastiques rétrogrades, et les évalutions dynamiques]
Dans cette Note, supposant que le générateur soit une fonction uniformément lipschitzienne, nous présentons un lien entre les équations différentielles stochastiques rétrogrades et les jeux différentiels stochastiques. Sous une hypothèse de domination, une évaluation
In this Note, assuming that the generator is uniform Lipschitz in the unknown variables, we relate the solution of a one dimensional backward stochastic differential equation with the value process of a stochastic differential game. Under a domination condition, an
Accepté le :
Publié le :
Shanjian Tang 1, 2
@article{CRMATH_2006__342_10_773_0, author = {Shanjian Tang}, title = {Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations}, journal = {Comptes Rendus. Math\'ematique}, pages = {773--778}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.03.025}, language = {en}, }
TY - JOUR AU - Shanjian Tang TI - Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations JO - Comptes Rendus. Mathématique PY - 2006 SP - 773 EP - 778 VL - 342 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2006.03.025 LA - en ID - CRMATH_2006__342_10_773_0 ER -
%0 Journal Article %A Shanjian Tang %T Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations %J Comptes Rendus. Mathématique %D 2006 %P 773-778 %V 342 %N 10 %I Elsevier %R 10.1016/j.crma.2006.03.025 %G en %F CRMATH_2006__342_10_773_0
Shanjian Tang. Dual representation as stochastic differential games of backward stochastic differential equations and dynamic evaluations. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 773-778. doi : 10.1016/j.crma.2006.03.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.025/
[1] Some min–max methods for the Hamilton–Jacobi equations, Indiana Univ. Math. J., Volume 33 (1984), pp. 31-50
[2] Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations, Indiana Univ. Math. J., Volume 33 (1984), pp. 773-797
[3] Reflected solution of backward SDE's, and related obstacle problems for PDE's, Ann. Probab., Volume 25 (1997), pp. 702-737
[4] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71
[5] The Cauchy problem for degenerate parabolic equations, J. Math. Mech., Volume 13 (1964), pp. 987-1008
[6] Adapted solution of a backward stochastic differential equation, Systems Control Lett., Volume 14 (1990), pp. 55-61
[7] Dynamical evaluation, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 585-589
- L1 solution to scalar BSDEs with logarithmic sub-linear growth generators, Systems Control Letters, Volume 177 (2023), p. 105553 | DOI:10.1016/j.sysconle.2023.105553
- Existence and uniqueness of solution to scalar BSDEs with
-integrable terminal values: the critical case, Electronic Communications in Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ecp254 - Existence of solution to scalar BSDEs with
-integrable terminal values, Electronic Communications in Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ecp127 - Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 11, p. 5521 | DOI:10.3934/dcds.2015.35.5521
Cité par 4 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier