[Empirical means for the Voronoi tessellations of the Poincaré disk]
Let Φ be a stationary ergodic point process with finite intensity of the Poincaré disk. After defining the typical cell associated to the Voronoi tessellation of Φ, we study the convergence of empirical means of this tessellation. Contrary to the Euclidean case, several natural choices of means exist, leading to different behavior. The case where Φ is a Poisson process is more specifically characterized.
Soit Φ un processus ponctuel stationnaire ergodique et d'intensité finie dans le disque de Poincaré. Après avoir défini la cellule typique associée à la mosaïque de Voronoi de Φ, nous nous intéressons à la convergence des moyennes empiriques liées à cette mosaïque. Contrairement au cas euclidien, plusieurs choix naturels de moyennes existent, avec des comportements différents. Le cas où Φ est un processus de Poisson est plus particulièrement explicité.
Accepted:
Published online:
Fabien Lips 1
@article{CRMATH_2006__342_10_767_0, author = {Fabien Lips}, title = {Moyennes empiriques pour les mosa{\"\i}ques de {Voronoi} du disque de {Poincar\'e}}, journal = {Comptes Rendus. Math\'ematique}, pages = {767--772}, publisher = {Elsevier}, volume = {342}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.02.018}, language = {fr}, }
Fabien Lips. Moyennes empiriques pour les mosaïques de Voronoi du disque de Poincaré. Comptes Rendus. Mathématique, Volume 342 (2006) no. 10, pp. 767-772. doi : 10.1016/j.crma.2006.02.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.018/
[1] On a coverage process ranging from the boolean model to the Poisson–Voronoi tessellation with applications to wireless communications, Adv. Appl. Probab., Volume 33 (2001), pp. 293-323
[2] Percolation in the hyperbolic plane, J. Amer. Math. Soc., Volume 14 (2001), pp. 487-507
[3] P. Calka, De nouveaux résultats sur la géométrie des mosaïques de Poisson–Voronoï et des mosaïques poissoniennes d'hyperplans. Etude du modèle de fissuration de Rényi–Widom, PhD thesis, université Claude Bernard-Lyon 1, 2002
[4] Limit theorems for the typical Poisson–Voronoi cell and the crofton cell with a large inradius, Ann. Probab., Volume 33 (2005), pp. 1625-1642
[5] Poisson–Voronoi tessellations in three-dimensional hyperbolic spaces, Adv. Appl. Probab., Volume 32 (2000), pp. 648-662
[6] Random Measures, Academic Press, 1983
[7] Thermal conductivity of polycristalline materials, J. Am. Ceramic Soc., Volume 78 (1995), pp. 728-736
[8] Analogs of wiener's ergodic theorems for semisimple groups II, Duke Math. J., Volume 103 (2000), pp. 233-259
[9] Lecture Notes on Random Voronoi Tessellations, Springer-Verlag, 1994
[10] Analogs of Wiener's ergodic theorems for semisimple groups I, Ann. Math., Volume 145 (1997), pp. 565-595
[11] Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons, 1992
[12] Construction of Voronoi diagram on the upper half-plane, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E79-A, 1995, pp. 533-539 No. (4)
[13] Mathematical Ecology, Wiley-Interscience, New York, 1977
[14] Fragmenting the universe III. The construction and statistics of 3d Voronoi tessellations, Astronom. Astrophys., Volume 283 (1994), pp. 361-406
Cited by Sources:
Comments - Policy