This note presents original rates of convergence for the deconvolution problem. We assume that both the estimated density and noise density are supersmooth and we compute the risk for two kinds of estimators.
Cette Note présente des vitesses de convergence originales pour le problème de déconvolution. On suppose que la densité estimée ainsi que la densité du bruit sont « supersmooth » et on calcule le risque pour deux types d'estimateurs.
Accepted:
Published online:
Claire Lacour 1
@article{CRMATH_2006__342_11_877_0, author = {Claire Lacour}, title = {Rates of convergence for nonparametric deconvolution}, journal = {Comptes Rendus. Math\'ematique}, pages = {877--882}, publisher = {Elsevier}, volume = {342}, number = {11}, year = {2006}, doi = {10.1016/j.crma.2006.04.006}, language = {en}, }
Claire Lacour. Rates of convergence for nonparametric deconvolution. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 877-882. doi : 10.1016/j.crma.2006.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.006/
[1] Deconvolution of supersmooth densities with smooth noise, Canad. J. Statist., Volume 32 (2004), pp. 181-192
[2] C. Butucea, A.B. Tsybakov, Sharp optimality for density deconvolution with dominating bias, Theory Probab. Appl., 2006, in press
[3] Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc., Volume 83 (1988), pp. 1184-1186
[4] F. Comte, Y. Rozenholc, M.-L. Taupin, Penalized contrast estimator for adaptive density deconvolution, Canad. J. Statist. 34, 2006, in press
[5] Consistent deconvolution in density estimation, Canad. J. Statist., Volume 17 (1989), pp. 235-239
[6] On the optimal rates of convergence for nonparametric deconvolution problem, Ann. Statist., Volume 19 (1991), pp. 1257-1272
[7] Adaptively local one-dimensional subproblems with application to a deconvolution problem, Ann. Statist., Volume 21 (1993), pp. 600-610
[8] A consistent non-parametric density estimator for the deconvolution problem, Canad. J. Statist., Volume 17 (1989), pp. 427-438
[9] Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist., Volume 27 (1999), pp. 2033-2053
[10] Rates of convergence of some estimators in a class of deconvolution problems, Statist. Probab. Lett., Volume 9 (1990), pp. 229-235
[11] On the best rate of adaptive estimation in some inverse problems, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 835-840
Cited by Sources:
Comments - Policy