Comptes Rendus
Statistics/Mathematical Analysis
Rates of convergence for nonparametric deconvolution
[Vitesses de convergence en déconvolution nonparamétrique]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 877-882.

Cette Note présente des vitesses de convergence originales pour le problème de déconvolution. On suppose que la densité estimée ainsi que la densité du bruit sont « supersmooth » et on calcule le risque pour deux types d'estimateurs.

This note presents original rates of convergence for the deconvolution problem. We assume that both the estimated density and noise density are supersmooth and we compute the risk for two kinds of estimators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.04.006

Claire Lacour 1

1 Laboratoire MAP 5, Université Paris 5, 45, rue des Saints-Pères, 75270 Paris cedex 06, France
@article{CRMATH_2006__342_11_877_0,
     author = {Claire Lacour},
     title = {Rates of convergence for nonparametric deconvolution},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {877--882},
     publisher = {Elsevier},
     volume = {342},
     number = {11},
     year = {2006},
     doi = {10.1016/j.crma.2006.04.006},
     language = {en},
}
TY  - JOUR
AU  - Claire Lacour
TI  - Rates of convergence for nonparametric deconvolution
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 877
EP  - 882
VL  - 342
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2006.04.006
LA  - en
ID  - CRMATH_2006__342_11_877_0
ER  - 
%0 Journal Article
%A Claire Lacour
%T Rates of convergence for nonparametric deconvolution
%J Comptes Rendus. Mathématique
%D 2006
%P 877-882
%V 342
%N 11
%I Elsevier
%R 10.1016/j.crma.2006.04.006
%G en
%F CRMATH_2006__342_11_877_0
Claire Lacour. Rates of convergence for nonparametric deconvolution. Comptes Rendus. Mathématique, Volume 342 (2006) no. 11, pp. 877-882. doi : 10.1016/j.crma.2006.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.006/

[1] C. Butucea Deconvolution of supersmooth densities with smooth noise, Canad. J. Statist., Volume 32 (2004), pp. 181-192

[2] C. Butucea, A.B. Tsybakov, Sharp optimality for density deconvolution with dominating bias, Theory Probab. Appl., 2006, in press

[3] R.J. Carrol; P. Hall Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc., Volume 83 (1988), pp. 1184-1186

[4] F. Comte, Y. Rozenholc, M.-L. Taupin, Penalized contrast estimator for adaptive density deconvolution, Canad. J. Statist. 34, 2006, in press

[5] L. Devroye Consistent deconvolution in density estimation, Canad. J. Statist., Volume 17 (1989), pp. 235-239

[6] J. Fan On the optimal rates of convergence for nonparametric deconvolution problem, Ann. Statist., Volume 19 (1991), pp. 1257-1272

[7] J. Fan Adaptively local one-dimensional subproblems with application to a deconvolution problem, Ann. Statist., Volume 21 (1993), pp. 600-610

[8] M.C. Liu; R.L. Taylor A consistent non-parametric density estimator for the deconvolution problem, Canad. J. Statist., Volume 17 (1989), pp. 427-438

[9] M. Pensky; B. Vidakovic Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist., Volume 27 (1999), pp. 2033-2053

[10] L. Stefanski Rates of convergence of some estimators in a class of deconvolution problems, Statist. Probab. Lett., Volume 9 (1990), pp. 229-235

[11] A.B. Tsybakov On the best rate of adaptive estimation in some inverse problems, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 835-840

  • Ousmane Sacko Hermite regression estimation in noisy convolution model, Journal of Statistical Planning and Inference, Volume 233 (2024), p. 106168 | DOI:10.1016/j.jspi.2024.106168
  • Pierre Tarrago Spectral deconvolution of matrix models: the additive case, Information and Inference: A Journal of the IMA, Volume 12 (2023) no. 4, p. 2629 | DOI:10.1093/imaiai/iaad037
  • Christophe Gaillac; Eric Gautier Adaptive estimation in the linear random coefficients model when regressors have limited variation, Bernoulli, Volume 28 (2022) no. 1 | DOI:10.3150/21-bej1354
  • Mylène Maïda; Tien Dat Nguyen; Thanh Mai Pham Ngoc; Vincent Rivoirard; Viet Chi Tran Statistical deconvolution of the free Fokker-Planck equation at fixed time, Bernoulli, Volume 28 (2022) no. 2 | DOI:10.3150/21-bej1366
  • Ali Al-Sharadqah; Majid Mojirsheibani; William Pouliot On the performance of weighted bootstrapped kernel deconvolution density estimators, Statistical Papers, Volume 61 (2020) no. 4, p. 1773 | DOI:10.1007/s00362-018-1006-0
  • Martin Kroll Nonparametric intensity estimation from noisy observations of a Poisson process under unknown error distribution, Metrika, Volume 82 (2019) no. 8, p. 961 | DOI:10.1007/s00184-019-00716-7
  • Thierry Dumont; Sylvain Le Corff Nonparametric regression on hidden Φ-mixing variables: Identifiability and consistency of a pseudo-likelihood based estimation procedure, Bernoulli, Volume 23 (2017) no. 2 | DOI:10.3150/15-bej767
  • C. Duval; J. Kappus Nonparametric adaptive estimation for grouped data, Journal of Statistical Planning and Inference, Volume 182 (2017), p. 12 | DOI:10.1016/j.jspi.2016.10.002
  • Rui Li; YouMing Liu Supersmooth density estimations over L p risk by wavelets, Science China Mathematics, Volume 60 (2017) no. 10, p. 1901 | DOI:10.1007/s11425-016-0294-3
  • Charlotte Dion Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model, Metrika, Volume 79 (2016) no. 8, p. 919 | DOI:10.1007/s00184-016-0583-y
  • Fabienne Comte; Johanna Kappus Density deconvolution from repeated measurements without symmetry assumption on the errors, Journal of Multivariate Analysis, Volume 140 (2015), p. 31 | DOI:10.1016/j.jmva.2015.04.004
  • C. Chesneau; F. Comte; G. Mabon; F. Navarro Estimation of convolution in the model with noise, Journal of Nonparametric Statistics, Volume 27 (2015) no. 3, p. 286 | DOI:10.1080/10485252.2015.1041944
  • Gaëlle Chagny; Angelina Roche Adaptive and minimax estimation of the cumulative distribution function given a functional covariate, Electronic Journal of Statistics, Volume 8 (2014) no. 2 | DOI:10.1214/14-ejs956
  • Charlotte Dion New adaptive strategies for nonparametric estimation in linear mixed models, Journal of Statistical Planning and Inference, Volume 150 (2014), p. 30 | DOI:10.1016/j.jspi.2014.03.006
  • Christophe Chesneau; Fabien Navarro On a Plug-In Wavelet Estimator for Convolutions of Densities, Journal of Statistical Theory and Practice, Volume 8 (2014) no. 4, p. 653 | DOI:10.1080/15598608.2013.824824
  • F. Comte; C. Lacour Anisotropic adaptive kernel deconvolution, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 49 (2013) no. 2 | DOI:10.1214/11-aihp470
  • Christophe Chesneau Wavelet Estimation of a Density in a GARCH-type Model, Communications in Statistics - Theory and Methods, Volume 42 (2013) no. 1, p. 98 | DOI:10.1080/03610926.2011.575516
  • Christophe Chesneau; Jalal Fadili Wavelet-Based Density Estimation in a Heteroscedastic Convolution Model, Communications in Statistics - Theory and Methods, Volume 42 (2013) no. 17, p. 3085 | DOI:10.1080/03610926.2011.615440
  • Christophe Chesneau On the adaptive wavelet deconvolution of a density for strong mixing sequences, Journal of the Korean Statistical Society, Volume 41 (2012) no. 4, p. 423 | DOI:10.1016/j.jkss.2012.01.005
  • F. Comte; C. Lacour Data-Driven Density Estimation in the Presence of Additive Noise with unknown Distribution, Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 73 (2011) no. 4, p. 601 | DOI:10.1111/j.1467-9868.2011.00775.x
  • Christophe Chesneau Wavelet density estimators for the deconvolution of a component from a mixture, Sankhya A, Volume 73 (2011) no. 2, p. 245 | DOI:10.1007/s13171-011-0017-x
  • F. Comte; C. Lacour; Y. Rozenholc Adaptive estimation of the dynamics of a discrete time stochastic volatility model, Journal of Econometrics, Volume 154 (2010) no. 1, p. 59 | DOI:10.1016/j.jeconom.2009.07.001
  • C. Butucea; F. Comte Adaptive estimation of linear functionals in the convolution model and applications, Bernoulli, Volume 15 (2009) no. 1 | DOI:10.3150/08-bej146
  • Claire Lacour Adaptive estimation of the transition density of a particular hidden Markov chain, Journal of Multivariate Analysis, Volume 99 (2008) no. 5, p. 787 | DOI:10.1016/j.jmva.2007.04.006
  • F. Comte; J. Dedecker; M. L. Taupin Adaptive density deconvolution with dependent inputs, Mathematical Methods of Statistics, Volume 17 (2008) no. 2 | DOI:10.3103/s1066530708020014
  • K. Méziani Nonparametric estimation of the purity of a quantum state in quantum homodyne tomography with noisy data, Mathematical Methods of Statistics, Volume 16 (2007) no. 4, p. 354 | DOI:10.3103/s1066530707040047

Cité par 26 documents. Sources : Crossref

Commentaires - Politique