Comptes Rendus
Théorie des groupes
Asymptotique des variétés de Shimura
[Asymptotics of Shimura varieties]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 899-902.

Let G be an algebraic, connected, reductive group over a global field F of characteristic zero. We introduce a notion of vanishing family of compact subgroups K of G over the finite adeles and use it to compute asymptotically Lefschetz numbers and (at least conjecturally) the number of points of Shimura varieties (attached to G and K) over finite fields. We deduce a general setting giving families of Shimura curves reaching the Drinfeld–Vlăduţ bound.

Soit G un groupe algébrique réductif connexe sur un corps global F de caractéristique nulle. Nous introduisons la notion de famille évanescente de sous-groupes compacts K de G sur les adèles finis et l'utilisons pour calculer asymptotiquement les nombres de Lefschetz et (conjecturalement) le nombre de points des variétés de Shimura (attachées à G et K) sur les corps finis. De cette étude, nous tirons un cadre général donnant naissance à des familles de courbes de Shimura atteignant la borne de Drinfeld–Vlăduţ.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.04.012

François Sauvageot 1

1 Institut de mathématiques de Jussieu, université Paris 7, 2, place Jussieu, 75251 Paris cedex 5, France
@article{CRMATH_2006__342_12_899_0,
     author = {Fran\c{c}ois Sauvageot},
     title = {Asymptotique des vari\'et\'es de {Shimura}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {899--902},
     publisher = {Elsevier},
     volume = {342},
     number = {12},
     year = {2006},
     doi = {10.1016/j.crma.2006.04.012},
     language = {fr},
}
TY  - JOUR
AU  - François Sauvageot
TI  - Asymptotique des variétés de Shimura
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 899
EP  - 902
VL  - 342
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2006.04.012
LA  - fr
ID  - CRMATH_2006__342_12_899_0
ER  - 
%0 Journal Article
%A François Sauvageot
%T Asymptotique des variétés de Shimura
%J Comptes Rendus. Mathématique
%D 2006
%P 899-902
%V 342
%N 12
%I Elsevier
%R 10.1016/j.crma.2006.04.012
%G fr
%F CRMATH_2006__342_12_899_0
François Sauvageot. Asymptotique des variétés de Shimura. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 899-902. doi : 10.1016/j.crma.2006.04.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.012/

[1] J. Arthur The L2-Lefschetz numbers of Hecke operators, Invent. Math., Volume 97 (1989), pp. 257-290

[2] V.G. Drinfeld; S.G. Vlăduţ Number of points of an algebraic curve, Funktsional. Anal. i Prilozhen., Volume 17 (1983), pp. 68-69

[3] M. Goresky; R.E. Kottwitz; R.D. McPherson Discrete series characters and the Lefschetz formula for Hecke operators, Duke Math. J., Volume 89 (1997), pp. 477-554

[4] M. Goresky; R.E. Kottwitz; R.D. McPherson Correction to “Discrete series characters and the Lefschetz formula for Hecke operators”, Duke Math. J., Volume 92 (1998), pp. 665-666

[5] Y. Ihara Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 28 (1981), pp. 721-724

[6] R.E. Kottwitz Stable trace formula: elliptic singular terms, Math. Ann., Volume 275 (1984), pp. 365-399

[7] R.E. Kottwitz Shimura varieties and λ-adic representations (L. Clozel; J.S. Milne, eds.), Automorphic Forms, Shimura Varieties and L-Functions, Perspectives in Mathematics, vol. I, Academic Press, 1988, pp. 161-209

[8] J.S. Milne The points on a Shimura variety modulo a prime of good reduction (R.P. Langlands; D. Ramakrishnan, eds.), The Zeta Functions of Picard Modular Surfaces, Les publications CRM, Montréal, 1992, pp. 151-253

[9] H. Reimann The Semi-Simple Zeta Function of Quaternionic Shimura Varieties, Lecture Notes in Mathematics, vol. 1657, Springer-Verlag, 1997

[10] J.-P. Serre Répartition asymptotique des valeurs propres de l'opérateur de Hecke Tp, J. Amer. Math. Soc., Volume 10 (1997), pp. 75-102

[11] M.A. Tsfasman; S.G. Vlăduţ; T. Zink Modular curves, Shimura curves and Goppa codes, better than Varshamov–Gilbert bound, Math. Nachr., Volume 109 (1982), pp. 21-28

Cited by Sources:

Comments - Policy