Comptes Rendus
Numerical Analysis
Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations
Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 283-286.

For the 3D system of equations describing large-scale ocean dynamics in the Cartesian coordinate system existence and uniqueness of a solution on an arbitrary time interval [0,T] is proved and the norm uˆx is shown to be continuous in time on [0,T].

L'auteur considère le système 3D d'équations décrivant la dynamique de l'océan à grande échelle en coordonnées cartésiennes. Il démontre, pour tout coefficient de viscosité et toute donnée initiale, l'existence et l'unicité d'une solution sur un intervalle de temps [0,T] arbitrairement, ainsi que la continuité en temps sur l'intervalle [0,T] de la norme uˆx.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.04.020

Georgij M. Kobelkov 1

1 Department of Mechanics and Mathematics of Moscow State University, Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
@article{CRMATH_2006__343_4_283_0,
     author = {Georgij M. Kobelkov},
     title = {Existence of a solution {\textquoteleft}in the large{\textquoteright} for the {3D} large-scale ocean dynamics equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {283--286},
     publisher = {Elsevier},
     volume = {343},
     number = {4},
     year = {2006},
     doi = {10.1016/j.crma.2006.04.020},
     language = {en},
}
TY  - JOUR
AU  - Georgij M. Kobelkov
TI  - Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 283
EP  - 286
VL  - 343
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2006.04.020
LA  - en
ID  - CRMATH_2006__343_4_283_0
ER  - 
%0 Journal Article
%A Georgij M. Kobelkov
%T Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations
%J Comptes Rendus. Mathématique
%D 2006
%P 283-286
%V 343
%N 4
%I Elsevier
%R 10.1016/j.crma.2006.04.020
%G en
%F CRMATH_2006__343_4_283_0
Georgij M. Kobelkov. Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations. Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 283-286. doi : 10.1016/j.crma.2006.04.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.020/

[1] Ch. Cao; E.S. Titi Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics (16 Nov 2005) | arXiv

[2] F. Guillén-Gonzéez; N. Masmoudi; M.A. Rodrigues-Bellido Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, Volume 14 (2001) no. 1, pp. 1381-1408

[3] Ch. Hu; R. Temam; M. Ziane The primitive equations on the large scale ocean under the small depth hypothesis, Discrete and Continuous Dynamical Systems, Volume 9 (January 2003) no. 1

[4] R. Lewandowski Analyse Mathématique et Océnographie, Masson, Paris, 1997

[5] J.L. Lions; R. Temam; S. Wang On the equations of the large-scale ocean, Nonlinearity, Volume 5 (1992), pp. 1007-1053

[6] J.L. Lions; R. Temam; S. Wang New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, Volume 5 (1992), pp. 237-288

[7] Mathematical Models of Ocean Circulation (G.I. Marchuk; A.S. Sarkisyan, eds.), Nauka, Novosibirsk, 1980 (in Russian)

[8] R. Temam; M. Ziane Some mathematical problems in geophysical fluid dynamics (S. Frielander; D. Serr, eds.), Handbook of Mathematical Fluid Dynamics, vol. 3, Elsevier, 2004, pp. 535-658

Cited by Sources:

Comments - Policy