For the 3D system of equations describing large-scale ocean dynamics in the Cartesian coordinate system existence and uniqueness of a solution on an arbitrary time interval is proved and the norm is shown to be continuous in time on .
L'auteur considère le système 3D d'équations décrivant la dynamique de l'océan à grande échelle en coordonnées cartésiennes. Il démontre, pour tout coefficient de viscosité et toute donnée initiale, l'existence et l'unicité d'une solution sur un intervalle de temps arbitrairement, ainsi que la continuité en temps sur l'intervalle de la norme .
Accepted:
Published online:
Georgij M. Kobelkov 1
@article{CRMATH_2006__343_4_283_0, author = {Georgij M. Kobelkov}, title = {Existence of a solution {\textquoteleft}in the large{\textquoteright} for the {3D} large-scale ocean dynamics equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {283--286}, publisher = {Elsevier}, volume = {343}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2006.04.020}, language = {en}, }
Georgij M. Kobelkov. Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations. Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, pp. 283-286. doi : 10.1016/j.crma.2006.04.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.020/
[1] Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics (16 Nov 2005) | arXiv
[2] Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, Volume 14 (2001) no. 1, pp. 1381-1408
[3] The primitive equations on the large scale ocean under the small depth hypothesis, Discrete and Continuous Dynamical Systems, Volume 9 (January 2003) no. 1
[4] Analyse Mathématique et Océnographie, Masson, Paris, 1997
[5] On the equations of the large-scale ocean, Nonlinearity, Volume 5 (1992), pp. 1007-1053
[6] New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, Volume 5 (1992), pp. 237-288
[7] Mathematical Models of Ocean Circulation (G.I. Marchuk; A.S. Sarkisyan, eds.), Nauka, Novosibirsk, 1980 (in Russian)
[8] Some mathematical problems in geophysical fluid dynamics (S. Frielander; D. Serr, eds.), Handbook of Mathematical Fluid Dynamics, vol. 3, Elsevier, 2004, pp. 535-658
Cited by Sources:
Comments - Policy