Asymptotic formulae for Green's kernels of various boundary value problems for the Laplace operator are obtained in regularly perturbed domains and certain domains with small singular perturbations of the boundary, as . The main new feature of these asymptotic formulae is their uniformity with respect to the independent variables x and y.
Des formules asymptotiques sont obtenues pour des noyaux de Green de divers problèmes aux limites pour l'opérateur de Laplace dans des domaines régulièrement perturbés et certains domaines avec des petites perturbations singulières du bord, quand . Le caractère novateur de ces formules asymptotiques réside dans leur uniformité par rapport aux variables indépendantes x et y.
Accepted:
Published online:
Vladimir Maz'ya 1, 2, 3; Alexander Movchan 1
@article{CRMATH_2006__343_3_185_0, author = {Vladimir Maz'ya and Alexander Movchan}, title = {Uniform asymptotic formulae for {Green's} kernels in regularly and singularly perturbed domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {185--190}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.05.015}, language = {en}, }
TY - JOUR AU - Vladimir Maz'ya AU - Alexander Movchan TI - Uniform asymptotic formulae for Green's kernels in regularly and singularly perturbed domains JO - Comptes Rendus. Mathématique PY - 2006 SP - 185 EP - 190 VL - 343 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2006.05.015 LA - en ID - CRMATH_2006__343_3_185_0 ER -
Vladimir Maz'ya; Alexander Movchan. Uniform asymptotic formulae for Green's kernels in regularly and singularly perturbed domains. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 185-190. doi : 10.1016/j.crma.2006.05.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.015/
[1] The Hadamard variational formula for the Green functions of some normal elliptic boundary value problems, Proc. Japan Acad. Ser. A Math. Sci., Volume 54 (1978) no. 8, pp. 215-220
[2] J. Hadamard, Sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, Mémoire couronné en 1907 par l'Académie des Sciences 33 (4) 515–629
[3] Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 1922
[4] Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vols. 1–2, Birkhäuser, 2000
[5] Perturbation of domains and Green kernels of heat equations, Proc. Japan Acad. Ser. A Math. Sci., Volume 54 (1978), pp. 322-325 Part II, 55 (1979) 172–175; Part III, 55 (1979) 227–230
[6] Spectra of the Laplacian with small Robin conditional boundary, Proc. Japan Acad. Ser. A Math. Sci., Volume 72 (1996) no. 3, pp. 53-54
[7] Heat kernel and singular variation of domains, Osaka J. Math., Volume 32 (1995) no. 4, pp. 941-957
Cited by Sources:
Comments - Policy