Comptes Rendus
Probability Theory
On the comparison theorem for multidimensional BSDEs
[Sur le théorème de comparaison pour les équations différentielles stochastiques rétrogrades]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 135-140.

Dans cette Note, nous donnons une condition nécessaire et suffisante sous laquelle le théorème de comparaison fonctionne pour les équations différentielles stochastiques rétrogrades (EDSR) multidimensionnelles et pour les EDSR à valeurs matricielles.

In this Note, we give a necessary and sufficient condition under which the comparison theorem holds for multidimensional backward stochastic differential equations (BSDEs) and for matrix-valued BSDEs.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.05.019

Ying Hu 1 ; Shige Peng 2

1 IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
2 Institute of Mathematics, Shandong University, Jinan, 250100, China
@article{CRMATH_2006__343_2_135_0,
     author = {Ying Hu and Shige Peng},
     title = {On the comparison theorem for multidimensional {BSDEs}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {135--140},
     publisher = {Elsevier},
     volume = {343},
     number = {2},
     year = {2006},
     doi = {10.1016/j.crma.2006.05.019},
     language = {en},
}
TY  - JOUR
AU  - Ying Hu
AU  - Shige Peng
TI  - On the comparison theorem for multidimensional BSDEs
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 135
EP  - 140
VL  - 343
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2006.05.019
LA  - en
ID  - CRMATH_2006__343_2_135_0
ER  - 
%0 Journal Article
%A Ying Hu
%A Shige Peng
%T On the comparison theorem for multidimensional BSDEs
%J Comptes Rendus. Mathématique
%D 2006
%P 135-140
%V 343
%N 2
%I Elsevier
%R 10.1016/j.crma.2006.05.019
%G en
%F CRMATH_2006__343_2_135_0
Ying Hu; Shige Peng. On the comparison theorem for multidimensional BSDEs. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 135-140. doi : 10.1016/j.crma.2006.05.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.019/

[1] P. Briand; F. Coquet; Y. Hu; J. Memin; S. Peng A converse comparison theorem for BSDEs and related properties of g-expectation, Electron. Comm. Probab., Volume 5 (2000), pp. 101-117

[2] R. Buckdahn; M. Quincampoix; A. Rascanu Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, Volume 116 (2000), pp. 485-504

[3] F. Coquet; Y. Hu; J. Memin; S. Peng A general converse comparison theorem for backward stochastic differential equations, C. R. Acad. Sci. Paris, Sér. I Math., Volume 333 (2001), pp. 577-581

[4] N. El Karoui; S. Peng; M.C. Quenez Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71

[5] E. Pardoux; S. Peng Backward stochastic differential equations and quasilinear parabolic partial differential equations, Charlotte, NC, 1991 (Lecture Notes in Control and Inform. Sci.), Volume vol. 176, Springer, Berlin (1992), pp. 200-217

[6] S. Peng A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation, Stochastics Stochastics Rep., Volume 38 (1992), pp. 119-134

Cité par Sources :

Commentaires - Politique