[Sur le théorème de comparaison pour les équations différentielles stochastiques rétrogrades]
Dans cette Note, nous donnons une condition nécessaire et suffisante sous laquelle le théorème de comparaison fonctionne pour les équations différentielles stochastiques rétrogrades (EDSR) multidimensionnelles et pour les EDSR à valeurs matricielles.
In this Note, we give a necessary and sufficient condition under which the comparison theorem holds for multidimensional backward stochastic differential equations (BSDEs) and for matrix-valued BSDEs.
Accepté le :
Publié le :
Ying Hu 1 ; Shige Peng 2
@article{CRMATH_2006__343_2_135_0, author = {Ying Hu and Shige Peng}, title = {On the comparison theorem for multidimensional {BSDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {135--140}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2006.05.019}, language = {en}, }
Ying Hu; Shige Peng. On the comparison theorem for multidimensional BSDEs. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 135-140. doi : 10.1016/j.crma.2006.05.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.019/
[1] A converse comparison theorem for BSDEs and related properties of g-expectation, Electron. Comm. Probab., Volume 5 (2000), pp. 101-117
[2] Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, Volume 116 (2000), pp. 485-504
[3] A general converse comparison theorem for backward stochastic differential equations, C. R. Acad. Sci. Paris, Sér. I Math., Volume 333 (2001), pp. 577-581
[4] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71
[5] Backward stochastic differential equations and quasilinear parabolic partial differential equations, Charlotte, NC, 1991 (Lecture Notes in Control and Inform. Sci.), Volume vol. 176, Springer, Berlin (1992), pp. 200-217
[6] A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation, Stochastics Stochastics Rep., Volume 38 (1992), pp. 119-134
Cité par Sources :
Commentaires - Politique