Comptes Rendus
Probability Theory
Comparison theorem for Brownian multidimensional BSDEs via jump processes
[Théorème de comparaison pour EDSR multidimensionnelles browniennes par processus à sauts]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 463-468.

Dans cette Note, nous donnons une preuve originale du théorème de comparaison pour les EDSR multidimensionnelles browniennes dans le cas où chaque ligne k du générateur ne dépend que de la k-ième ligne de lʼinconnue Z.

In this Note, we provide an original proof of the comparison theorem for multidimensional Brownian BSDEs in the case where at each line k the generator depends on the matrix variable Z only through its row k.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.012

Idris Kharroubi 1, 2

1 CEREMADE, CNRS, UMR 7534, université Paris Dauphine, place du Maréchal De-Lattre-De-Tassigny, 75775 Paris cedex 16, France
2 CREST, laboratoire de finance assurance, 15, boulevard Gabriel, Péri, 92245 Malakoff cedex, France
@article{CRMATH_2011__349_7-8_463_0,
     author = {Idris Kharroubi},
     title = {Comparison theorem for {Brownian} multidimensional {BSDEs} via jump processes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {463--468},
     publisher = {Elsevier},
     volume = {349},
     number = {7-8},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.012},
     language = {en},
}
TY  - JOUR
AU  - Idris Kharroubi
TI  - Comparison theorem for Brownian multidimensional BSDEs via jump processes
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 463
EP  - 468
VL  - 349
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2011.03.012
LA  - en
ID  - CRMATH_2011__349_7-8_463_0
ER  - 
%0 Journal Article
%A Idris Kharroubi
%T Comparison theorem for Brownian multidimensional BSDEs via jump processes
%J Comptes Rendus. Mathématique
%D 2011
%P 463-468
%V 349
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2011.03.012
%G en
%F CRMATH_2011__349_7-8_463_0
Idris Kharroubi. Comparison theorem for Brownian multidimensional BSDEs via jump processes. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 463-468. doi : 10.1016/j.crma.2011.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.012/

[1] R. Buckdahn; M. Quincampoix; A. Rascanu Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, Volume 116 (2000), pp. 485-504

[2] Y. Hu; S. Peng On the comparison theorem for multidimensional BSDE, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 135-140

[3] S. Peng A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation, Stochastics Stochastics Rep., Volume 38 (1992), pp. 119-134

[4] M. Royer Backward stochastic differential equations with jumps and related non-linear expectation, Stochastic Proc. and their Appl., Volume 116 (2006), pp. 1358-1376

Cité par Sources :

Commentaires - Politique