In this Note, we give a necessary and sufficient condition under which the comparison theorem holds for multidimensional backward stochastic differential equations (BSDEs) and for matrix-valued BSDEs.
Dans cette Note, nous donnons une condition nécessaire et suffisante sous laquelle le théorème de comparaison fonctionne pour les équations différentielles stochastiques rétrogrades (EDSR) multidimensionnelles et pour les EDSR à valeurs matricielles.
Accepted:
Published online:
Ying Hu 1; Shige Peng 2
@article{CRMATH_2006__343_2_135_0, author = {Ying Hu and Shige Peng}, title = {On the comparison theorem for multidimensional {BSDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {135--140}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2006.05.019}, language = {en}, }
Ying Hu; Shige Peng. On the comparison theorem for multidimensional BSDEs. Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 135-140. doi : 10.1016/j.crma.2006.05.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.019/
[1] A converse comparison theorem for BSDEs and related properties of g-expectation, Electron. Comm. Probab., Volume 5 (2000), pp. 101-117
[2] Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, Volume 116 (2000), pp. 485-504
[3] A general converse comparison theorem for backward stochastic differential equations, C. R. Acad. Sci. Paris, Sér. I Math., Volume 333 (2001), pp. 577-581
[4] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71
[5] Backward stochastic differential equations and quasilinear parabolic partial differential equations, Charlotte, NC, 1991 (Lecture Notes in Control and Inform. Sci.), Volume vol. 176, Springer, Berlin (1992), pp. 200-217
[6] A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation, Stochastics Stochastics Rep., Volume 38 (1992), pp. 119-134
Cited by Sources:
Comments - Policy