The author has previously constructed a class of admissible vector fields on the path space of an elliptic diffusion process x taking values in a closed compact manifold. In this Note the existence of flows for this class of vector fields is established and it is shown that the law of x is quasi-invariant under these flows.
L'auteur a précédemment construit une classe de champs de vecteurs admissibles sur l'espace des chemins d'une diffusion elliptique x prenant valeurs dans une variété compacte fermée. Dans cette Note l'existence des flots pour cette classe de champs de vecteurs est établie et on montre que la loi de x est quasi-invariante sous ces flots.
Accepted:
Published online:
Denis Bell 1
@article{CRMATH_2006__343_3_197_0, author = {Denis Bell}, title = {Quasi-invariant measures on the path space of a diffusion}, journal = {Comptes Rendus. Math\'ematique}, pages = {197--200}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.06.026}, language = {en}, }
Denis Bell. Quasi-invariant measures on the path space of a diffusion. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 197-200. doi : 10.1016/j.crma.2006.06.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.026/
[1] Divergence theorems in path space, J. Funct. Anal., Volume 218 (2005) no. 1, pp. 130-149
[2] Divergence theorems in path space II: degenerate diffusions, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 869-872
[3] D. Bell, Admissible vector fields and quasi-invariant measures. Appendix to The Malliavin Calculus, second ed., Dover Publications, Mineola, NY, 2006
[4] Équations différentielles sur l'espace de Wiener et formules de Cameron–Martin non-linéaires, J. Funct. Anal., Volume 54 (1983), pp. 206-227
[5] A Cameron–Martin type quasi-invariance theorem for Brownian motion on a compact manifold, J. Funct. Anal., Volume 109 (1992), pp. 272-376
[6] Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, J. Funct. Anal., Volume 134 (1995), pp. 417-450
[7] Tangent processes on Wiener space, J. Funct. Anal., Volume 192 (2002) no. 1, pp. 234-270
Cited by Sources:
Comments - Policy