Comptes Rendus
Probability Theory
Asymptotics for the distribution of lengths of excursions of a d-dimensional Bessel process (0<d<2)
Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 201-208.

Let (Rt,t0) denote a d-dimensional Bessel process (0<d<2). For every t0, we consider the times gt=sup{st:Rs=0}, and dt=inf{s>t:Rs=0}, as well as the three sequences: (Vgtn,n1), (Vtn,n2), and (Vdtn,n2), which consist of the lengths of excursions of R away from 0 before gt, before t, and before dt, respectively, each one being ranked by decreasing order.

We obtain a limit theorem concerning each of the laws of these three sequences, as t. The result is expressed in terms of a positive, σ-finite measure Π on the set S of decreasing sequences. Π is closely related with the Poisson–Dirichlet laws on S.

Soit (Rt,t0) un processus de Bessel de dimension d(0,2). Pour tout t0, on considère les temps gt=sup{st:Rs=0} et dt=inf{s>t:Rs=0}, ainsi que les trois suites : (Vgtn,n1), resp. (Vtn,n2), resp. (Vdtn,n2) des longueurs d'excursions de R hors de 0, avant gt, resp. avant t, resp. avant dt, rangées par ordre décroissant.

Nous obtenons un théorème limite concernant chacune des lois de ces trois suites, lorsque t. Ce théorème s'exprime à l'aide d'une mesure positive, σ-finie, Π sur S={s=(s1,s2,,sn,);s1s2sn0}. Π est intimement liée aux lois de Poisson–Dirichlet sur S.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.06.010

Bernard Roynette 1; Pierre Vallois 1; Marc Yor 2, 3

1 Université Henri-Poincaré, Institut Elie-Cartan, BP239, 54506 Vandoeuvre-les-Nancy cedex, France
2 Laboratoire de probabilités et modèles aléatoires, Universités Paris VI et VII, 4, place Jussieu, case 188, 75252 Paris cedex 05, France
3 Institut Universitaire de France, France
@article{CRMATH_2006__343_3_201_0,
     author = {Bernard Roynette and Pierre Vallois and Marc Yor},
     title = {Asymptotics for the distribution of lengths of excursions of a \protect\emph{d}-dimensional {Bessel} process $ (0<d<2)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {201--208},
     publisher = {Elsevier},
     volume = {343},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crma.2006.06.010},
     language = {en},
}
TY  - JOUR
AU  - Bernard Roynette
AU  - Pierre Vallois
AU  - Marc Yor
TI  - Asymptotics for the distribution of lengths of excursions of a d-dimensional Bessel process $ (0
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 201
EP  - 208
VL  - 343
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2006.06.010
LA  - en
ID  - CRMATH_2006__343_3_201_0
ER  - 
%0 Journal Article
%A Bernard Roynette
%A Pierre Vallois
%A Marc Yor
%T Asymptotics for the distribution of lengths of excursions of a d-dimensional Bessel process $ (0
%J Comptes Rendus. Mathématique
%D 2006
%P 201-208
%V 343
%N 3
%I Elsevier
%R 10.1016/j.crma.2006.06.010
%G en
%F CRMATH_2006__343_3_201_0
Bernard Roynette; Pierre Vallois; Marc Yor. Asymptotics for the distribution of lengths of excursions of a d-dimensional Bessel process $ (0
                  
                

[1] C. Donati-Martin, B. Roynette, P. Vallois, M. Yor, On constants related to the choice of the local time at 0 and the corresponding Itô measure for Bessel processes with dimension d=2(1α), Studia Math. Hung. (2006), in press

[2] B. De Meyer; B. Roynette; P. Vallois; M. Yor On independent times and positions for Brownian motions, Rev. Math. Iberoamericana, Volume 18 (2002) no. 3, pp. 541-586

[3] F.B. Knight On the duration of the longest excursion, Sem. Stoch. Prob., 1985, Birkhäuser, Basel, 1986, pp. 117-147

[4] N.N. Lebedev Special Functions and their Applications, Dover Pub. Inc., New York, 1965

[5] J. Pitman; M. Yor Arc sine laws and interval partitions derived from a stable subordinator, Proc. London Math. Soc., Volume 65 (1992) no. 3, pp. 326-356

[6] J. Pitman; M. Yor The two parameter Poisson–Dirichlet distribution derived from a stable subordinator, Ann. Probab., Volume 25 (1997) no. 2, pp. 855-900

[7] J. Pitman; M. Yor On the relative lengths of excursions derived from a stable subordinator, Sém. Probab. XXXI, Lecture Notes in Math., vol. 1655, 1997, pp. 287-305

[8] B. Roynette, P. Vallois, M. Yor, Penalizing a Brownian motion with a function of the lengths of its excursions, VII (March 2006), in preparation

[9] B. Roynette, P. Vallois, M. Yor, Penalisation of a Bessel process of dimension d=2(1α) (0<d<2) by a function of its longest excursion, IX (March 2006), in preparation

Cited by Sources:

Comments - Policy