Let denote a d-dimensional Bessel process . For every , we consider the times , and , as well as the three sequences: , , and , which consist of the lengths of excursions of R away from 0 before , before t, and before , respectively, each one being ranked by decreasing order.
We obtain a limit theorem concerning each of the laws of these three sequences, as . The result is expressed in terms of a positive, σ-finite measure Π on the set of decreasing sequences. Π is closely related with the Poisson–Dirichlet laws on .
Soit un processus de Bessel de dimension . Pour tout , on considère les temps et , ainsi que les trois suites : , resp. , resp. des longueurs d'excursions de R hors de 0, avant , resp. avant t, resp. avant , rangées par ordre décroissant.
Nous obtenons un théorème limite concernant chacune des lois de ces trois suites, lorsque . Ce théorème s'exprime à l'aide d'une mesure positive, σ-finie, Π sur . Π est intimement liée aux lois de Poisson–Dirichlet sur .
Accepted:
Published online:
Bernard Roynette 1; Pierre Vallois 1; Marc Yor 2, 3
@article{CRMATH_2006__343_3_201_0, author = {Bernard Roynette and Pierre Vallois and Marc Yor}, title = {Asymptotics for the distribution of lengths of excursions of a \protect\emph{d}-dimensional {Bessel} process $ (0<d<2)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {201--208}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.06.010}, language = {en}, }
TY - JOUR AU - Bernard Roynette AU - Pierre Vallois AU - Marc Yor TI - Asymptotics for the distribution of lengths of excursions of a d-dimensional Bessel process $ (0 JO - Comptes Rendus. Mathématique PY - 2006 SP - 201 EP - 208 VL - 343 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2006.06.010 LA - en ID - CRMATH_2006__343_3_201_0 ER -
%0 Journal Article %A Bernard Roynette %A Pierre Vallois %A Marc Yor %T Asymptotics for the distribution of lengths of excursions of a d-dimensional Bessel process $ (0 %J Comptes Rendus. Mathématique %D 2006 %P 201-208 %V 343 %N 3 %I Elsevier %R 10.1016/j.crma.2006.06.010 %G en %F CRMATH_2006__343_3_201_0
Bernard Roynette; Pierre Vallois; Marc Yor. Asymptotics for the distribution of lengths of excursions of a d-dimensional Bessel process $ (0
[1] C. Donati-Martin, B. Roynette, P. Vallois, M. Yor, On constants related to the choice of the local time at 0 and the corresponding Itô measure for Bessel processes with dimension , Studia Math. Hung. (2006), in press
[2] On independent times and positions for Brownian motions, Rev. Math. Iberoamericana, Volume 18 (2002) no. 3, pp. 541-586
[3] On the duration of the longest excursion, Sem. Stoch. Prob., 1985, Birkhäuser, Basel, 1986, pp. 117-147
[4] Special Functions and their Applications, Dover Pub. Inc., New York, 1965
[5] Arc sine laws and interval partitions derived from a stable subordinator, Proc. London Math. Soc., Volume 65 (1992) no. 3, pp. 326-356
[6] The two parameter Poisson–Dirichlet distribution derived from a stable subordinator, Ann. Probab., Volume 25 (1997) no. 2, pp. 855-900
[7] On the relative lengths of excursions derived from a stable subordinator, Sém. Probab. XXXI, Lecture Notes in Math., vol. 1655, 1997, pp. 287-305
[8] B. Roynette, P. Vallois, M. Yor, Penalizing a Brownian motion with a function of the lengths of its excursions, VII (March 2006), in preparation
[9] B. Roynette, P. Vallois, M. Yor, Penalisation of a Bessel process of dimension by a function of its longest excursion, IX (March 2006), in preparation
Cited by Sources:
Comments - Policy