Comptes Rendus
Mathematical Problems in Mechanics
The Reissner–Mindlin plate theory via Γ-convergence
[La théorie des plaques de Reissner–Mindlin via Γ-convergence]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 6, pp. 437-440.

We obtain the energy functional of Reissner–Mindlin plates as the Γ-limit of a family of three-dimensional energy functionals within the framework of second-order linear elasticity. The choice of the family of functionals, as well as of the candidate limiting functional, is guided by a formal scaling argument.

Nous obtenons la fonctionnelle de l'énergie de plaques de Reissner–Mindlin comme la Γ-limite d'une famille de fonctionnelles d'énergie tri-dimensionnelles dans le cadre de l'élasticité linéaire du second ordre. Les choix de la famille de fonctionnelles et de la fonctionnelle limite sont suggérés par l'étude formelle des mises à l'échelle.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.08.006

Roberto Paroni 1 ; Paolo Podio-Guidugli 2 ; Giuseppe Tomassetti 2

1 Dipartimento di Architettura e Pianificazione, Università degli Studi di Sassari, 07100 Sassari, Italy
2 Dipartimento di Ingegneria Civile, Università degli Studi di Roma TorVergata, Viale Politecnico 1, 00133 Roma, Italy
@article{CRMATH_2006__343_6_437_0,
     author = {Roberto Paroni and Paolo Podio-Guidugli and Giuseppe Tomassetti},
     title = {The {Reissner{\textendash}Mindlin} plate theory via {\protect\emph{\ensuremath{\Gamma}}-convergence}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {437--440},
     publisher = {Elsevier},
     volume = {343},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2006.08.006},
     language = {en},
}
TY  - JOUR
AU  - Roberto Paroni
AU  - Paolo Podio-Guidugli
AU  - Giuseppe Tomassetti
TI  - The Reissner–Mindlin plate theory via Γ-convergence
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 437
EP  - 440
VL  - 343
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2006.08.006
LA  - en
ID  - CRMATH_2006__343_6_437_0
ER  - 
%0 Journal Article
%A Roberto Paroni
%A Paolo Podio-Guidugli
%A Giuseppe Tomassetti
%T The Reissner–Mindlin plate theory via Γ-convergence
%J Comptes Rendus. Mathématique
%D 2006
%P 437-440
%V 343
%N 6
%I Elsevier
%R 10.1016/j.crma.2006.08.006
%G en
%F CRMATH_2006__343_6_437_0
Roberto Paroni; Paolo Podio-Guidugli; Giuseppe Tomassetti. The Reissner–Mindlin plate theory via Γ-convergence. Comptes Rendus. Mathématique, Volume 343 (2006) no. 6, pp. 437-440. doi : 10.1016/j.crma.2006.08.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.08.006/

[1] P.G. Ciarlet Mathematical Elasticity. Vol. II: Plates, North-Holland, 1997

[2] H. Le Dret; A. Raoult Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results, Arch. Rational Mech. Anal., Volume 154 (2000), pp. 101-134

[3] B. Miara, P. Podio-Guidugli, Deduction by scaling: a unified approach to plate and rod theories (2006), submitted for publication

  • Ionel-Dumitrel Ghiba; Mircea Bîrsan; Peter Lewintan; Patrizio Neff The Isotropic Cosserat Shell Model Including Terms up to O(h5). Part II: Existence of Minimizers, Journal of Elasticity, Volume 142 (2020) no. 2, p. 263 | DOI:10.1007/s10659-020-09795-4
  • Xiaoyi Chen; Zilong Song; Hui-Hui Dai Pointwise error estimate for a consistent beam theory, Analysis and Applications, Volume 16 (2018) no. 01, p. 103 | DOI:10.1142/s0219530516500135
  • François Murat; Roberto Paroni Plate theory as the variational limit of the complementary energy functionals of inhomogeneous anisotropic linearly elastic bodies, Mathematics and Mechanics of Solids, Volume 23 (2018) no. 8, p. 1119 | DOI:10.1177/1081286517707998
  • Lior Falach; Roberto Paroni; Paolo Podio-Guidugli A justification of the Timoshenko beam model through Γ-convergence, Analysis and Applications, Volume 15 (2017) no. 02, p. 261 | DOI:10.1142/s0219530515500207
  • Pei Pei; Mohammad A. Rammaha; Daniel Toundykov Well-posedness of Mindlin–Timoshenko Plate with Nonlinear Boundary Damping and Sources, Applied Mathematics Optimization, Volume 76 (2017) no. 2, p. 429 | DOI:10.1007/s00245-016-9357-1
  • Pei Pei Stability of Mindlin–Timoshenko plate with nonlinear boundary damping and boundary sources, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, p. 1467 | DOI:10.1016/j.jmaa.2016.11.077
  • Roberto Paroni; Paolo Podio-Guidugli On Variational Dimension Reduction in Structure Mechanics, Journal of Elasticity, Volume 118 (2015) no. 1, p. 1 | DOI:10.1007/s10659-014-9473-6
  • Pei Pei; Mohammad A. Rammaha; Daniel Toundykov Global well-posedness and stability of semilinear Mindlin–Timoshenko system, Journal of Mathematical Analysis and Applications, Volume 418 (2014) no. 2, p. 535 | DOI:10.1016/j.jmaa.2014.03.014
  • Roberto Paroni; Giuseppe Tomassetti On Korn’s constant for thin cylindrical domains, Mathematics and Mechanics of Solids, Volume 19 (2014) no. 3, p. 318 | DOI:10.1177/1081286512465080
  • Mircea Bîrsan; Patrizio Neff Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations, Mathematics and Mechanics of Solids, Volume 19 (2014) no. 4, p. 376 | DOI:10.1177/1081286512466659
  • Mircea Bîrsan; Patrizio Neff Existence Theorems in the Geometrically Non-linear 6-Parameter Theory of Elastic Plates, Journal of Elasticity, Volume 112 (2013) no. 2, p. 185 | DOI:10.1007/s10659-012-9405-2
  • Michele Serpilli; Françoise Krasucki; Giuseppe Geymonat An asymptotic strain gradient Reissner-Mindlin plate model, Meccanica, Volume 48 (2013) no. 8, p. 2007 | DOI:10.1007/s11012-013-9719-6
  • George Avalos; Daniel Toundykov On Stability and Trace Regularity of Solutions to Reissner-Mindlin-Timoshenko Equations, Modern Aspects of the Theory of Partial Differential Equations (2011), p. 79 | DOI:10.1007/978-3-0348-0069-3_5
  • George Avalos; Daniel Toundykov Boundary stabilization of structural acoustic interactions with interface on a Reissner–Mindlin plate, Nonlinear Analysis: Real World Applications (2011) | DOI:10.1016/j.nonrwa.2011.05.001
  • Francesca Passarella; Vincenzo Tibullo; Vittorio Zampoli Decay properties of solutions of a Mindlin-type plate model for rhombic systems, Journal of Mechanics of Materials and Structures, Volume 5 (2010) no. 2, p. 323 | DOI:10.2140/jomms.2010.5.323
  • PATRIZIO NEFF; KWON-IL HONG; JENA JEONG THE REISSNER–MINDLIN PLATE IS THE Γ-LIMIT OF COSSERAT ELASTICITY, Mathematical Models and Methods in Applied Sciences, Volume 20 (2010) no. 09, p. 1553 | DOI:10.1142/s0218202510004763
  • Francesca Passarella; Vittorio Zampoli Spatial estimates for transient and steady-state solutions in transversely isotropic plates of Mindlin-type, European Journal of Mechanics - A/Solids, Volume 28 (2009) no. 4, p. 868 | DOI:10.1016/j.euromechsol.2009.01.004
  • Francesca Passarella; Vittorio Zampoli Some results concerning the state of bending for transversely isotropic plates, Mathematical Methods in the Applied Sciences, Volume 32 (2009) no. 14, p. 1828 | DOI:10.1002/mma.1113
  • Paolo Podio-Guidugli Concepts in the mechanics of thin structures, Classical and Advanced Theories of Thin Structures, Volume 503 (2008), p. 77 | DOI:10.1007/978-3-211-85430-3_4
  • ROBERTO PARONI; PAOLO PODIO-GUIDUGLI; GIUSEPPE TOMASSETTI A JUSTIFICATION OF THE REISSNER–MINDLIN PLATE THEORY THROUGH VARIATIONAL CONVERGENCE, Analysis and Applications, Volume 05 (2007) no. 02, p. 165 | DOI:10.1142/s0219530507000936
  • Bernadette Miara; Paolo Podio-Guidugli Une approche formelle unifiée des théories de plaques et poutres linéairement élastiques, Comptes Rendus. Mathématique, Volume 343 (2006) no. 10, p. 675 | DOI:10.1016/j.crma.2006.09.035

Cité par 21 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: