[La théorie des plaques de Reissner–Mindlin via Γ-convergence]
We obtain the energy functional of Reissner–Mindlin plates as the Γ-limit of a family of three-dimensional energy functionals within the framework of second-order linear elasticity. The choice of the family of functionals, as well as of the candidate limiting functional, is guided by a formal scaling argument.
Nous obtenons la fonctionnelle de l'énergie de plaques de Reissner–Mindlin comme la Γ-limite d'une famille de fonctionnelles d'énergie tri-dimensionnelles dans le cadre de l'élasticité linéaire du second ordre. Les choix de la famille de fonctionnelles et de la fonctionnelle limite sont suggérés par l'étude formelle des mises à l'échelle.
Accepté le :
Publié le :
Roberto Paroni 1 ; Paolo Podio-Guidugli 2 ; Giuseppe Tomassetti 2
@article{CRMATH_2006__343_6_437_0, author = {Roberto Paroni and Paolo Podio-Guidugli and Giuseppe Tomassetti}, title = {The {Reissner{\textendash}Mindlin} plate theory via {\protect\emph{\ensuremath{\Gamma}}-convergence}}, journal = {Comptes Rendus. Math\'ematique}, pages = {437--440}, publisher = {Elsevier}, volume = {343}, number = {6}, year = {2006}, doi = {10.1016/j.crma.2006.08.006}, language = {en}, }
TY - JOUR AU - Roberto Paroni AU - Paolo Podio-Guidugli AU - Giuseppe Tomassetti TI - The Reissner–Mindlin plate theory via Γ-convergence JO - Comptes Rendus. Mathématique PY - 2006 SP - 437 EP - 440 VL - 343 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2006.08.006 LA - en ID - CRMATH_2006__343_6_437_0 ER -
Roberto Paroni; Paolo Podio-Guidugli; Giuseppe Tomassetti. The Reissner–Mindlin plate theory via Γ-convergence. Comptes Rendus. Mathématique, Volume 343 (2006) no. 6, pp. 437-440. doi : 10.1016/j.crma.2006.08.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.08.006/
[1] Mathematical Elasticity. Vol. II: Plates, North-Holland, 1997
[2] Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results, Arch. Rational Mech. Anal., Volume 154 (2000), pp. 101-134
[3] B. Miara, P. Podio-Guidugli, Deduction by scaling: a unified approach to plate and rod theories (2006), submitted for publication
- The Isotropic Cosserat Shell Model Including Terms up to
. Part II: Existence of Minimizers, Journal of Elasticity, Volume 142 (2020) no. 2, p. 263 | DOI:10.1007/s10659-020-09795-4 - Pointwise error estimate for a consistent beam theory, Analysis and Applications, Volume 16 (2018) no. 01, p. 103 | DOI:10.1142/s0219530516500135
- Plate theory as the variational limit of the complementary energy functionals of inhomogeneous anisotropic linearly elastic bodies, Mathematics and Mechanics of Solids, Volume 23 (2018) no. 8, p. 1119 | DOI:10.1177/1081286517707998
- A justification of the Timoshenko beam model through Γ-convergence, Analysis and Applications, Volume 15 (2017) no. 02, p. 261 | DOI:10.1142/s0219530515500207
- Well-posedness of Mindlin–Timoshenko Plate with Nonlinear Boundary Damping and Sources, Applied Mathematics Optimization, Volume 76 (2017) no. 2, p. 429 | DOI:10.1007/s00245-016-9357-1
- Stability of Mindlin–Timoshenko plate with nonlinear boundary damping and boundary sources, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, p. 1467 | DOI:10.1016/j.jmaa.2016.11.077
- On Variational Dimension Reduction in Structure Mechanics, Journal of Elasticity, Volume 118 (2015) no. 1, p. 1 | DOI:10.1007/s10659-014-9473-6
- Global well-posedness and stability of semilinear Mindlin–Timoshenko system, Journal of Mathematical Analysis and Applications, Volume 418 (2014) no. 2, p. 535 | DOI:10.1016/j.jmaa.2014.03.014
- On Korn’s constant for thin cylindrical domains, Mathematics and Mechanics of Solids, Volume 19 (2014) no. 3, p. 318 | DOI:10.1177/1081286512465080
- Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations, Mathematics and Mechanics of Solids, Volume 19 (2014) no. 4, p. 376 | DOI:10.1177/1081286512466659
- Existence Theorems in the Geometrically Non-linear 6-Parameter Theory of Elastic Plates, Journal of Elasticity, Volume 112 (2013) no. 2, p. 185 | DOI:10.1007/s10659-012-9405-2
- An asymptotic strain gradient Reissner-Mindlin plate model, Meccanica, Volume 48 (2013) no. 8, p. 2007 | DOI:10.1007/s11012-013-9719-6
- On Stability and Trace Regularity of Solutions to Reissner-Mindlin-Timoshenko Equations, Modern Aspects of the Theory of Partial Differential Equations (2011), p. 79 | DOI:10.1007/978-3-0348-0069-3_5
- Boundary stabilization of structural acoustic interactions with interface on a Reissner–Mindlin plate, Nonlinear Analysis: Real World Applications (2011) | DOI:10.1016/j.nonrwa.2011.05.001
- Decay properties of solutions of a Mindlin-type plate model for rhombic systems, Journal of Mechanics of Materials and Structures, Volume 5 (2010) no. 2, p. 323 | DOI:10.2140/jomms.2010.5.323
- THE REISSNER–MINDLIN PLATE IS THE Γ-LIMIT OF COSSERAT ELASTICITY, Mathematical Models and Methods in Applied Sciences, Volume 20 (2010) no. 09, p. 1553 | DOI:10.1142/s0218202510004763
- Spatial estimates for transient and steady-state solutions in transversely isotropic plates of Mindlin-type, European Journal of Mechanics - A/Solids, Volume 28 (2009) no. 4, p. 868 | DOI:10.1016/j.euromechsol.2009.01.004
- Some results concerning the state of bending for transversely isotropic plates, Mathematical Methods in the Applied Sciences, Volume 32 (2009) no. 14, p. 1828 | DOI:10.1002/mma.1113
- Concepts in the mechanics of thin structures, Classical and Advanced Theories of Thin Structures, Volume 503 (2008), p. 77 | DOI:10.1007/978-3-211-85430-3_4
- A JUSTIFICATION OF THE REISSNER–MINDLIN PLATE THEORY THROUGH VARIATIONAL CONVERGENCE, Analysis and Applications, Volume 05 (2007) no. 02, p. 165 | DOI:10.1142/s0219530507000936
- Une approche formelle unifiée des théories de plaques et poutres linéairement élastiques, Comptes Rendus. Mathématique, Volume 343 (2006) no. 10, p. 675 | DOI:10.1016/j.crma.2006.09.035
Cité par 21 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier