[Consistance de l'algorithme de Landweber pour un problème mal posé avec des erreurs aléatoires]
Dans cette Note, nous considérons un problème mal posé linéaire décrit par une équation à opérateur où le second membre est mesuré avec des erreurs aléatoires. Nous montrons l'existence et l'unicité de la pseudo-solution du problème puis nous l'estimons en utilisant l'algorithme de Landweber. Par ailleurs, nous montrons la convergence presque complète (p.co) de celui-ci tout en précisant la vitesse de convergence et nous construisons un domaine de confiance pour ladite pseudo-solution.
This Note deals with the linear ill-posed problem, described by operator equations in which the second member is measured with random errors. We first show the existence and the unicity of the pseudo-solution for such a problem and later estimate it using Landweber algorithm. We also show the ‘almost complete convergence’ (a.co) of this algorithm specifying its convergence rate. We finally build a confidence domain for the so mentioned pseudo-solution.
Accepté le :
Publié le :
Abdelnasser Dahmani 1 ; Fatah Bouhmila 1
@article{CRMATH_2006__343_7_487_0, author = {Abdelnasser Dahmani and Fatah Bouhmila}, title = {Consistency of {Landweber} algorithm in an ill-posed problem with random data}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--491}, publisher = {Elsevier}, volume = {343}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.09.010}, language = {en}, }
TY - JOUR AU - Abdelnasser Dahmani AU - Fatah Bouhmila TI - Consistency of Landweber algorithm in an ill-posed problem with random data JO - Comptes Rendus. Mathématique PY - 2006 SP - 487 EP - 491 VL - 343 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2006.09.010 LA - en ID - CRMATH_2006__343_7_487_0 ER -
Abdelnasser Dahmani; Fatah Bouhmila. Consistency of Landweber algorithm in an ill-posed problem with random data. Comptes Rendus. Mathématique, Volume 343 (2006) no. 7, pp. 487-491. doi : 10.1016/j.crma.2006.09.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.010/
[1] Pseudo-solution de l'équation , C. R. Acad. Sci. Paris, Ser. A, Volume 263 (1966), pp. 282-285
[2] Consistency and rates of convergence of non linear Tikhonov regularization with random noise, Inverse Problems, Volume 20 (2004), pp. 1773-1789
[3] Spatially adaptive splines for statistical linear inverse problems, J. Multivariate Anal., Volume 81 (2002), pp. 100-119
[4] Regularization of Inverse Problems, Kluwer, Dordrecht, 1996
[5] A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., Volume 72 (1995), pp. 21-73
[6] Sur les problèmes mal posés linéaires, Rapports de l'Académie des Sciences de l'URSS, Volume 145 (1962) no. 2, pp. 270-272
[7] Statistical and Computational Inverse Problems, Springer-Verlag, New York, 2005
[8] An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math., Volume 73 (1951), pp. 615-624
[9] Sur les pseudo-solutions, JVM et MPH, Volume 9 (1969) no. 6, pp. 1381-1392
[10] Inverse Problems Mathematical and Analytical Techniques with Applications to Engineering, Springer, 2005
[11] Minimum variance regularization in linear inverse problems, Nucl. Instrum. Methods Phys. Res., Sect. A, Volume 523 (2004), pp. 186-192
[12] Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, 2005
[13] On the method of Lavrentiev regularization for nonlinear ill-posed problems, Inverse Problems, Volume 18 (2002) no. 1, pp. 191-207
[14] Solution for Ill-Posed Problems, Wiley, New York, 1977
[15] Exponential inequalities for sums of random vectors, J. Multivariate Anal., Volume 6 (1976), pp. 473-499
Cité par Sources :
Commentaires - Politique