This Note deals with the two-dimensional Navier–Stokes system. In this context, we prove a result concerning its global approximate controllability by means of boundary controls.
Cette Note concerne le système de Navier–Stokes en dimension 2. Nous montrons un résultat de contrôlabilité approchée globale à l'aide de contrôles frontière.
Accepted:
Published online:
Sergio Guerrero 1; Oleg Yurievich Imanuvilov 2; Jean-Pierre Puel 3
@article{CRMATH_2006__343_9_573_0, author = {Sergio Guerrero and Oleg Yurievich Imanuvilov and Jean-Pierre Puel}, title = {Remarks on global approximate controllability for the {2-D} {Navier{\textendash}Stokes} system with {Dirichlet} boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {573--577}, publisher = {Elsevier}, volume = {343}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.09.023}, language = {en}, }
TY - JOUR AU - Sergio Guerrero AU - Oleg Yurievich Imanuvilov AU - Jean-Pierre Puel TI - Remarks on global approximate controllability for the 2-D Navier–Stokes system with Dirichlet boundary conditions JO - Comptes Rendus. Mathématique PY - 2006 SP - 573 EP - 577 VL - 343 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2006.09.023 LA - en ID - CRMATH_2006__343_9_573_0 ER -
%0 Journal Article %A Sergio Guerrero %A Oleg Yurievich Imanuvilov %A Jean-Pierre Puel %T Remarks on global approximate controllability for the 2-D Navier–Stokes system with Dirichlet boundary conditions %J Comptes Rendus. Mathématique %D 2006 %P 573-577 %V 343 %N 9 %I Elsevier %R 10.1016/j.crma.2006.09.023 %G en %F CRMATH_2006__343_9_573_0
Sergio Guerrero; Oleg Yurievich Imanuvilov; Jean-Pierre Puel. Remarks on global approximate controllability for the 2-D Navier–Stokes system with Dirichlet boundary conditions. Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 573-577. doi : 10.1016/j.crma.2006.09.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.023/
[1] Global asymptotic stabilization for the controllable systems without drift, Math. Control Signals Systems, Volume 5 (1992) no. 3, pp. 295-312
[2] On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions, ESIAN COCV, Volume 1 (1995/96), pp. 35-75
[3] Régularité et unicité pour le problème de Stokes, Comm. Partial Differential Equations, Volume 27 (2002) no. 3–4, pp. 437-475
[4] E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl. 83 (12) 1501–1542
[5] Boundary controllability of parabolic equations, Sb. Math., Volume 186 (1995), pp. 879-900
[6] Abstract estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains, J. Funct. Anal., Volume 102 (1991), pp. 72-94
[7] S. Guerrero, O. Yu. Imanuvilov, J.-P. Puel, Global approximate controllability of the 2-D Navier–Stokes equations with Dirichlet boundary conditions, Preprint, 2006
Cited by Sources:
Comments - Policy