In this Note, we study the ‘triply’ degenerate problem: on , on Ω and ‘on some part of the boundary’ , in the case of continuous nonhomogenous and nonstationary boundary data a. The functions are assumed to be continuous nondecreasing and to verify the normalisation condition and the range condition . Using monotonicity and penalization methods, we prove existence of a weak entropy solution in the spirit of F. Otto (1996).
Dans cette Note, on étudie le problème triplement dégénéré : sur , dans Ω et « sur une partie de la frontière » , dans le cas d'une donnée a continue non homogène et non stationnaire sur le bord. Les fonctions sont supposées être continues croissantes, vérifiant la condition de normalisation : et de surjectivité . En utilisant des méthodes de monotonie et de pénalisation, on prouve l'existence d'une solution entropique au sens de F. Otto (1996).
Accepted:
Published online:
Kaouther Ammar 1
@article{CRMATH_2006__343_9_569_0, author = {Kaouther Ammar}, title = {On nonlinear diffusion problems with strong degeneracy}, journal = {Comptes Rendus. Math\'ematique}, pages = {569--572}, publisher = {Elsevier}, volume = {343}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.09.030}, language = {en}, }
Kaouther Ammar. On nonlinear diffusion problems with strong degeneracy. Comptes Rendus. Mathématique, Volume 343 (2006) no. 9, pp. 569-572. doi : 10.1016/j.crma.2006.09.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.09.030/
[1] K. Ammar, J. Carrillo, P. Wittbold, Scalar conservation laws with general boundary condition and continuous flux function, J. Differential Equations (2006), in press
[2] First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, Volume 4 (1979) no. 9, pp. 1017-1034
[3] Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Math., Volume 147 (1999), pp. 269-361
[4] Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Rational Mech. Anal., Volume 163 (2002), pp. 87-124
[5] Entropy formulation for a parabolic degenerate problem with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal., Volume 41 (2003) no. 6, pp. 2262-2293
[6] Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris, Volume 322 (1996), pp. 729-734
Cited by Sources:
Comments - Policy